Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 7(8): 986-90, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18688507

RESUMO

The average, corrected attenuance spectra for both spectral forms of phytochrome in a mature leaf were calculated. Optical masking by chlorophyll together with the detour effect (optical path lengthening effect) due to multiple light scattering led to large changes in both the Qy band shape and wavelength position and the effective intensity of the weak vibrational bands increases. The Pfr/Pr oscillator-strength-ratio between 400-750 nm (0.93 in vitro), becomes 1.63 in a leaf. Thus the dominant absorption form is Pfr. These two values permit calculation of the phytochrome photoequilibrium under conditions of "daylight" illumination both in vitro and in folia. These values are 0.6 and 0.38 respectively. Previous literature estimates for the situation in vitro, based on the 660/730 nm absorption ratio, yielded values close to 0.6. It is demonstrated that this large decrease in the phytochrome photoequilibrium in a leaf has the effect of translating this parameter to a position on the dose (red/far-red light ratio)-response (Pfr/Ptot) plot towards greater sensitivity to changes in the environmental red/far-red ratio. The increased sensitivity factor is almost five-fold for the "daylight" environment and is even greater for the various "shade-light" environments. The approximate time taken to attain photoequilibrium (1/e lifetime) has also been calculated for phytochrome in a leaf in different light environments. For the "daylight" environment the photoequilibration time is approximately 5 s, which increases into the 20-80 s interval under different degrees of "shade light". Thus, despite the strong optical masking by chlorophyll in a mature leaf, the phytochrome photoequilibrium is attained quite rapidly on a physiological time scale.


Assuntos
Luz , Fitocromo/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Análise Espectral/métodos
2.
Photochem Photobiol ; 80(3): 492-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15623336

RESUMO

To investigate the light-harvesting properties of the Photosystem II chlorophyll (chl) a-b complexes (major light-harvesting complex of Photosystem II [LHCII], CP24, CP26, CP29) in a mature leaf under natural "daylight" illumination, the absorption spectra of the isolated complexes were converted into the photon absorption spectrum (1-T) within a leaf, using the approach of Rivadossi et al. ([1999] Photosynth. Res. 60, 209-215). In the Qy region, significant enhancement of light harvesting by the chl b electronic transitions, with respect to the absorption spectra (optical density [OD]), as well as a large and generalized increase (between two- and four-fold) associated with the vibrational bands of both chl a and b, was observed, which acquires an important light-harvesting role (approximately 30-40% of total). In the Soret region, a small increase in light harvesting by chl b was indicated. To gain more detailed information on these aspects the light harvesting of LHCII in a leaf was investigated. This required describing the pigment absorption (chl a and b, carotenoids) in the LHCII OD spectrum in terms of spectral subbands, which were subsequently used to estimate the relative light harvesting of each pigment type in LHCII of a leaf. When the entire visible spectral interval between 400 and 730 nm is considered, the chl a light harvesting is essentially unchanged with respect to the absorption spectrum (OD) of isolated LHCII, whereas the chl b contribution is 20% higher and the carotenoids are 33% lower. The relative enhancement of the chl b absorption is principally associated with the Qy electronic transition region, the light-harvesting contribution of which becomes prominent in the leaf.


Assuntos
Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Folhas de Planta/química , Ligação Proteica , Análise Espectral , Spinacia oleracea/química , Spinacia oleracea/metabolismo , Spinacia oleracea/efeitos da radiação
3.
Photochem Photobiol ; 75(6): 613-8, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12081323

RESUMO

In the present study the analysis of the relation between the excited state population in the photosystem II (PSII) antenna and photoinactivation has been extended from an in vitro system, isolated thylakoids, to an in vivo system, Chlamydomonas reinhardtii cells. The results indicate that the excited state quenching by an added singlet quencher induces maximal protection against photoinhibition of about 30% of that expected on the basis of the observed light intensity-treatment time reciprocity rule. Similar results, obtained previously with thylakoids, have been interpreted in terms of damaged or incorrectly assembled complexes that play an important role in photoinhibition in the thylakoid membranes (Santabarbara, S., K. Neverov, F. M. Garlaschi, G. Zucchelli and R. C. Jennings [2001] Involvement of uncoupled antenna chlorophylls in photoinhibition in thylakoids. FEBS Lett. 491, 109-113.). In an attempt to better define this aspect, the photoinhibition action spectra were determined for mutant barley thylakoids, lacking the chlorophyll (Chl) a-b complexes of the outer antenna, and for its wild type. The results indicate that in both systems the action spectra are significantly blueshifted (2-4 nm) and are broader than the PSII absorption in the membranes. These data are interpreted in terms of a heterogeneous population of outer and inner antenna pigment-protein complexes that contain significant levels of uncoupled Chl.


Assuntos
Chlamydomonas reinhardtii/efeitos da radiação , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Chlamydomonas reinhardtii/metabolismo , Hordeum , Luz , Folhas de Planta , Proteínas de Plantas/efeitos da radiação , Proteínas de Protozoários/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...