Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(12): 15043-15049, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477897

RESUMO

The operation of oxide-based memristive devices relies on the fast accumulation and depletion of oxygen vacancies by an electric field close to the metal-oxide interface. Here, we show that the reversible change of the local concentration of oxygen vacancies at this interface also produces a change in the thermal boundary resistance (TBR), i.e., a thermal resistive switching effect. We used frequency domain thermoreflectance to monitor the interfacial metal-oxide TBR in (Pt,Cr)/SrTiO3 devices, showing a change of ≈20% under usual SET/RESET operation voltages, depending on the structure of the device. Time-dependent thermal relaxation experiments suggest ionic rearrangement along the whole area of the metal/oxide interface, apart from the ionic filament responsible for the electrical conductivity switching. The experiments presented in this work provide valuable knowledge about oxide ion dynamics in redox-based memristive devices.

2.
Chem Sci ; 14(48): 14082-14091, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38098723

RESUMO

The use of copper-based artificial nucleases as potential anticancer agents has been hampered by their poor selectivity in the oxidative DNA cleavage process. An alternative strategy to solve this problem is to design systems capable of selectively damaging noncanonical DNA structures that play crucial roles in the cell cycle. We designed an oligocationic CuII peptide helicate that selectively binds and cleaves DNA three-way junctions (3WJs) and induces oxidative DNA damage via a ROS-mediated pathway both in vitro and in cellulo, specifically at DNA replication foci of the cell nucleus, where this DNA structure is transiently generated. To our knowledge, this is the first example of a targeted chemical nuclease that can discriminate with high selectivity 3WJs from other forms of DNA both in vitro and in mammalian cells. Since the DNA replication process is deregulated in cancer cells, this approach may pave the way for the development of a new class of anticancer agents based on copper-based artificial nucleases.

3.
ACS Appl Mater Interfaces ; 15(42): 49538-49544, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37846079

RESUMO

The emergence of symmetry-breaking orders such as ferromagnetism and the weak interlayer bonding in van der Waals materials offers a unique platform to engineer novel heterostructures and tune transport properties like thermal conductivity. Here, we report the experimental and theoretical study of the cross-plane thermal conductivity, κ⊥, of the van der Waals two-dimensional (2D) ferromagnet Fe3GeTe2. We observe an increase in κ⊥ with thickness, indicating a diffusive transport regime with ballistic contributions. These results are supported by the theoretical analyses of the accumulated thermal conductivity, which show an important contribution of phonons with mean free paths between 10 and 200 nm. Moreover, our experiments show a reduction of κ⊥ in the low-temperature ferromagnetic phase occurring at the magnetic transition. The calculations show that this reduction in κ⊥ is associated with a decrease in the group velocities of the acoustic phonons and an increase in the phonon-phonon scattering of the Raman modes that couple to the magnetic phase. These results demonstrate the potential of van der Waals ferromagnets for thermal transport engineering.

4.
Nanotechnology ; 34(45)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37536304

RESUMO

In magnetic tunnel junctions based on iron oxide nanoparticles the disorder and the oxidation state of the surface spin as well as the nanoparticles functionalization play a crucial role in the magnetotransport properties. In this work, we report a systematic study of the effects of vacuum annealing on the structural, magnetic and transport properties of self-assembled ∼10 nm Fe3O4nanoparticles. The high temperature treatment (from 573 to 873 K) decomposes the organic coating into amorphous carbon, reducing the electrical resistivity of the assemblies by 4 orders of magnitude. At the same time, the 3.Fe2+/(Fe3++Fe2+) ratio is reduced from 1.11 to 0.13 when the annealing temperature of the sample increases from 573 to 873 K, indicating an important surface oxidation. Although the 2 nm physical gap remains unchanged with the thermal treatment, a monotonous decrease of tunnel barrier width was obtained from the electron transport measurements when the annealing temperature increases, indicating an increment in the number of defects and hot-spots in the gap between the nanoparticles. This is reflected in the reduction of the spin dependent tunneling, which reduces the interparticle magnetoresistance. This work shows new insights about influence of the nanoparticle interfacial composition, as well their the spatial arrangement, on the tunnel transport of self-assemblies, and evidence the importance of optimizing the nanostructure fabrication for increasing the tunneling current without degrading the spin polarized current.

5.
J Mater Chem C Mater ; 11(14): 4588-4594, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37033203

RESUMO

The development of systems that can be switched between states with different thermal conductivities is one of the current challenges in materials science. Despite their enormous diversity and chemical richness, molecular materials have been only scarcely explored in this regard. Here, we report a reversible, light-triggered thermal conductivity switching of ≈30-40% in mesophases of pure 4,4'-dialkyloxy-3-methylazobenzene. By doping a liquid crystal matrix with the azobenzene molecules, reversible and bidirectional switching of the thermal conductivity can be achieved by UV/Vis-light irradiation. Given the enormous variety of photoactive molecules and chemically compatible liquid crystal mesophases, this approach opens unforeseen possibilities for developing effective thermal switches based on molecular materials.

6.
ACS Appl Mater Interfaces ; 13(38): 45679-45685, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34523338

RESUMO

We present a detailed analysis of the temperature dependence of the thermal conductivity of a ferroelectric PbTiO3 thin film deposited in a composition-spread geometry enabling a continuous range of compositions from ∼25% titanium deficient to ∼20% titanium rich to be studied. By fitting the experimental results to the Debye model we deconvolute and quantify the two main phonon-scattering sources in the system: ferroelectric domain walls (DWs) and point defects. Our results prove that ferroelectric DWs are the main agent limiting the thermal conductivity in this system, not only in the stoichiometric region of the thin film ([Pb]/[Ti] ≈ 1) but also when the concentration of the cation point defects is significant (up to ∼15%). Hence, DWs in ferroelectric materials are a source of phonon scattering at least as effective as point defects. Our results demonstrate the viability and effectiveness of using reconfigurable DWs to control the thermal conductivity in solid-state devices.

7.
Adv Sci (Weinh) ; 8(15): e2004207, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34145782

RESUMO

Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow d bands are at the origin of remarkable properties such as the opening of Mott gap, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO3 with V4+  in a 3d1  electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, the authors' focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO3  thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid (FL); instead, it is shown show that the quasi-2D topology of the Fermi surface (FS) and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic, and transport data. The picture that emerges is not restricted to SrVO3  but can be shared with other 3d and 4d metallic oxides.

8.
Angew Chem Int Ed Engl ; 60(14): 7540-7546, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33416197

RESUMO

Here we show that by adjusting the concentration of tetrabutyl ammonium and phosphonium salts in water (≈1.5-2.0 m), hydrophobic solvation triggers the formation of a unique, highly incompressible supramolecular liquid, with a dynamic structure similar to clathrates, involving essentially all H2 O molecules of the solvent. Despite the increasing local order, the thermal diffusivity, and compressibility of these supramolecular liquids is strongly decreased with respect to bulk water due to slower relaxation dynamics. The results presented in this paper open an avenue to design a new family of supramolecular fluids, stable under atmospheric conditions, which can find important technological applications in energy storage and conversion.

9.
Phys Chem Chem Phys ; 22(36): 20524-20530, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966417

RESUMO

Self-assembled ionic liquid crystals are anisotropic ionic conductors, with potential applications in areas as important as solar cells, battery electrolytes and catalysis. However, many of these applications are still limited by the lack of precise control over the variety of phases that can be formed (nematic, smectic, or semi/fully crystalline), determined by a complex pattern of different intermolecular interactions. Here we report the results of a systematic study of crystallization of several imidazolium salts in which the relative contribution of isotropic coulombic and directional H-bond interactions is carefully tuned. Our results demonstrate that the relative strength of directional H-bonds with respect to the isotropic Coulomb interaction determines the formation of a crystalline, semi-crystalline or glassy phase at low temperature. The possibility of pinpointing H-bonding directionality in ionic liquids make them model systems to study the crystallization of an ionic solid under a perturbed Coulomb potential.

10.
Phys Chem Chem Phys ; 22(37): 21094-21098, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32945315

RESUMO

The interaction of water with small alcohols can be used as a model for understanding hydrophobic solvation of larger and more complex amphiphilic molecules. Despite its apparent simplicity, water/ethanol mixtures show important anomalies in several of their properties, like specific heat or partial molar volume, whose precise origin are still a matter of debate. Here we report high-resolution thermal conductivity, compressibility, and IR-spectroscopy data for water/ethanol solutions showing three distinct regions of solvation, related to changes in the H-bond network. Notably, the thermal conductivity shows a surprising increase of ≈3.1% with respect to pure water at dilute concentrations of ethanol (x = 0.025), which suggests a strengthening of H-bond network of water. Our results prove that the rate of energy transfer in water can be increased by hydrophobic solvation, due to the cooperative nature of the H-bond network.

11.
Nat Commun ; 11(1): 2949, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527995

RESUMO

We report a detailed analysis of the electrical resistivity exponent of thin films of NdNiO3 as a function of epitaxial strain. Thin films under low strain conditions show a linear dependence of the resistivity versus temperature, consistent with a classical Fermi gas ruled by electron-phonon interactions. In addition, the apparent temperature exponent, n, can be tuned with the epitaxial strain between n = 1 and n = 3. We discuss the critical role played by quenched random disorder in the value of n. Our work shows that the assignment of Fermi/Non-Fermi liquid behaviour based on experimentally obtained resistivity exponents requires an in-depth analysis of the degree of disorder in the material.

12.
Nano Lett ; 19(11): 7901-7907, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31596599

RESUMO

Achieving efficient spatial modulation of phonon transmission is an essential step on the path to phononic circuits using "phonon currents". With their intrinsic and reconfigurable interfaces, domain walls (DWs), ferroelectrics are alluring candidates to be harnessed as dynamic heat modulators. This paper reports the thermal conductivity of single-crystal PbTiO3 thin films over a wide variety of epitaxial-strain-engineered ferroelectric domain configurations. The phonon transport is proved to be strongly affected by the density and type of DWs, achieving a 61% reduction of the room-temperature thermal conductivity compared to the single-domain scenario. The thermal resistance across the ferroelectric DWs is obtained, revealing a very high value (≈5.0 × 10-9 K m2 W-1), comparable to grain boundaries in oxides, explaining the strong modulation of the thermal conductivity in PbTiO3. This low thermal conductance of the DWs is ascribed to the structural mismatch and polarization gradient found between the different types of domains in the PbTiO3 films, resulting in a structural inhomogeneity that extends several unit cells around the DWs. These findings demonstrate the potential of ferroelectric DWs as efficient regulators of heat flow in one single material, overcoming the complexity of multilayers systems and the uncontrolled distribution of grain boundaries, paving the way for applications in phononics.

13.
ACS Appl Mater Interfaces ; 10(41): 35367-35373, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30249093

RESUMO

Understanding diffusion of oxygen vacancies in oxides under different external stimuli is crucial for the design of ion-based electronic devices, improvement of catalytic performance, and so forth. In this manuscript, using an external electric field produced by an atomic force microscopy tip, we obtain the room-temperature diffusion coefficient of oxygen-vacancies in thin films of SrTiO3 under compressive/tensile epitaxial strain. Tensile strain produces a substantial increase of the diffusion coefficient, facilitating the mobility of vacancies through the film. Additionally, the effect of tip bias, pulse time, and temperature on the local concentration of vacancies is investigated. These are important parameters of control in the production and stabilization of nonvolatile states in ion-based devices. Our findings show the key role played by strain for the control of oxygen vacancy migration in thin-film oxides.

14.
Chemistry ; 24(6): 1295-1303, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29178467

RESUMO

The development of responsive magnetic resonance imaging contrast agents opens the door to a highly sensitive and specific diagnosis of altered physiological conditions. In this field, manganese dioxide (MnO2 ) is starting to be a leading contributor due to its susceptibility to conditions relevant to human diseased states, such as cancer. So far, the preclinical application of MnO2 has mainly been in the form of nanosheets, with enhancements of magnetic resonance imaging signals up to 50-fold upon activation. Herein, we thoroughly investigate, through a simple reaction, a series of Mnx Oy samples and correlate their phase composition and structure/morphology to the performance as classic/responsive MRI contrast agents in response to redox changes. Signal enhancements as high as 140-fold were obtained from MnO2 nano-urchins, and their capability as responsive magnetic resonance imaging contrast agents was demonstrated in vitro.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/química , Nanoestruturas/química , Óxidos/química , Células A549 , Sobrevivência Celular , Humanos , Cinética , Oxirredução
15.
Small ; 13(39)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28809085

RESUMO

Materials that can couple electrical and mechanical properties constitute a key element of smart actuators, energy harvesters, or many sensing devices. Within this class, functional oxides display specific mesoscale responses which often result in great sensitivity to small external stimuli. Here, a novel combination of molecular beam epitaxy and a water-based chemical-solution method is used for the design of mechanically controlled multilevel device integrated on silicon. In particular, the possibility of adding extra functionalities to a ferroelectric oxide heterostructure by n-doping and nanostructuring a BaTiO3 thin film on Si(001) is explored. It is found that the ferroelectric polarization can be reversed, and resistive switching can be measured, upon a mechanical load in epitaxial BaTiO3-δ /La0.7 Sr0.3 MnO3 /SrTiO3 /Si columnar nanostructures. A flexoelectric effect is found, stemming from substantial strain gradients that can be created with moderate loads. Simultaneously, mechanical effects on the local conductivity can be used to modulate a nonvolatile resistive state of the BaTiO3-δ heterostructure. As a result, three different configurations of the system become accessible on top of the usual voltage reversal of polarization and resistive states.

16.
Nano Lett ; 16(3): 1736-40, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26822394

RESUMO

We report the effect of interface symmetry-mismatch on the magnetic properties of LaCoO3 (LCO) thin films. Growing epitaxial LCO under tensile strain on top of cubic SrTiO3 (STO) produces a contraction along the c axis and a characteristic ferromagnetic response. However, we report here that ferromagnetism in LCO is completely suppressed when grown on top of a buffer layer of rhombohedral La2/3Sr1/3MnO3 (LSMO), in spite of identical in-plane and out-of-plane lattice deformation. This confirms that it is the lattice symmetry mismatch and not just the total strain, which determines the magnetism of LCO. On the basis of this control over the magnetic properties of LCO, we designed a multilayered structure to achieve independent rotation of the magnetization in ferromagnetic insulating LCO and half-metallic ferromagnet LSMO. This is an important step forward for the design of spin-filtering tunnel barriers based on LCO.

17.
Sci Rep ; 5: 11889, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26153533

RESUMO

Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]n(RS)[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures.

18.
Adv Mater ; 27(19): 3032-7, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25856781

RESUMO

A large enhancement of the thermoelectric figure of merit is reported in single-crystalline films of CrN. The mechanism of the reduction of the lattice thermal conductivity in cubic CrN is similar to the resonant bonding in IV-VI compounds. Therefore, useful ideas from classic thermo-electrics can be applied to tune functionalities in transition metal nitrides and oxides.

19.
ACS Appl Mater Interfaces ; 7(9): 5410-4, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25667996

RESUMO

Hole-doping into the Mott insulator LaMnO3 results in a very rich magneto-electric phase diagram, including colossal magnetoresistance and different types of charge and orbital ordering. On the other hand, LaMnO3 presents an important catalytic activity for oxygen reduction, which is fundamental for increasing the efficiency of solid-oxide fuel cells and other energy-conversion devices. In this work, we report the chemical solution (water-based) synthesis of high-quality epitaxial thin films of LaMnO3, free of defects at square-centimeter scales, and compatible with standard microfabrication techniques. The films show a robust ferromagnetic moment and large magnetoresistance at room temperature. Through a comparison with films grown by pulsed laser deposition, we show that the quasi-equilibrium growth conditions characteristic of this chemical process can be exploited to tune new functionalities of the material.

20.
ACS Appl Mater Interfaces ; 6(23): 21279-85, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25392905

RESUMO

We report magnetic and electronic transport measurements across epitaxial bilayers of ferromagnetic insulator LaCoO3 and half-metallic ferromagnet La2/3Sr1/3MnO3 (LCO/LSMO: 3.5 nm/20 nm) fabricated by a chemical solution method. The I-V curves at room temperature and 4K measured with conducting atomic force microscopy (CAFM) on well-defined patterned areas exhibit the typical features of a tunneling process. The curves have been fitted to the Simmons model to determine the height (φ) and width (s) of the insulating LCO barrier. The results yield φ = 0.40 ± 0.05 eV (0.50 ± 0.01 eV) at room temperature (4K) and s = 3 nm, in good agreement with the structural analysis. Our results demonstrate that this chemical method is able to produce epitaxial heterostructures with the quality required for this type of fundamental studies and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...