Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biomedicines ; 12(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672225

RESUMO

BACKGROUND: While 'immuno-competence' is a well-known term, it lacks an operational definition. To address this omission, this study explored whether the temporal and structured data of the complete blood cell count (CBC) can rapidly estimate immuno-competence. To this end, one or more ratios that included data on all monocytes, lymphocytes and neutrophils were investigated. MATERIALS AND METHODS: Longitudinal CBC data collected from 101 COVID-19 patients (291 observations) were analyzed. Dynamics were estimated with several approaches, which included non-structured (the classic CBC format) and structured data. Structured data were assessed as complex ratios that capture multicellular interactions among leukocytes. In comparing survivors with non-survivors, the hypothesis that immuno-competence may exhibit feedback-like (oscillatory or cyclic) responses was tested. RESULTS: While non-structured data did not distinguish survivors from non-survivors, structured data revealed immunological and statistical differences between outcomes: while survivors exhibited oscillatory data patterns, non-survivors did not. In survivors, many variables (including IL-6, hemoglobin and several complex indicators) showed values above or below the levels observed on day 1 of the hospitalization period, displaying L-shaped data distributions (positive kurtosis). In contrast, non-survivors did not exhibit kurtosis. Three immunologically defined data subsets included only survivors. Because information was based on visual patterns generated in real time, this method can, potentially, provide information rapidly. DISCUSSION: The hypothesis that immuno-competence expresses feedback-like loops when immunological data are structured was not rejected. This function seemed to be impaired in immuno-suppressed individuals. While this method rapidly informs, it is only a guide that, to be confirmed, requires additional tests. Despite this limitation, the fact that three protective (survival-associated) immunological data subsets were observed since day 1 supports many clinical decisions, including the early and personalized prognosis and identification of targets that immunomodulatory therapies could pursue. Because it extracts more information from the same data, structured data may replace the century-old format of the CBC.

3.
Front Med (Lausanne) ; 10: 1240426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020180

RESUMO

Background: The COVID-19 pandemic intensified the use of scarce resources, including extracorporeal membrane oxygenation (ECMO) and mechanical ventilation (MV). The combinatorial features of the immune system may be considered to estimate such needs and facilitate continuous open-ended knowledge discovery. Materials and methods: Computer-generated distinct data patterns derived from 283 white blood cell counts collected within five days after hospitalization from 97 COVID-19 patients were used to predict patient's use of hospital resources. Results: Alone, data on separate cell types-such as neutrophils-did not identify patients that required MV/ECMO. However, when structured as multicellular indicators, distinct data patterns displayed by such markers separated patients later needing or not needing MV/ECMO. Patients that eventually required MV/ECMO also revealed increased percentages of neutrophils and decreased percentages of lymphocytes on admission. Discussion/conclusion: Future use of limited hospital resources may be predicted when combinations of available blood leukocyte-related data are analyzed. New methods could also identify, upon admission, a subset of COVID-19 patients that reveal inflammation. Presented by individuals not previously exposed to MV/ECMO, this inflammation differs from the well-described inflammation induced after exposure to such resources. If shown to be reproducible in other clinical syndromes and populations, it is suggested that the analysis of immunological combinations may inform more and/or uncover novel information even in the absence of pre-established questions.

4.
Mol Aspects Med ; 91: 101142, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36116999

RESUMO

Topics expected to influence personalized medicine (PM), where medical decisions, practices, and treatments are tailored to the individual patient, are reviewed. Lack of discrimination due to different biological conditions that express similar values of numerical variables (ambiguity) is regarded to be a major potential barrier for PM. This material explores possible causes and sources of ambiguity and offers suggestions for mitigating the impacts of uncertainties. Three causes of ambiguity are identified: (1) delayed adoption of innovations, (2) inadequate emphases, and (3) inadequate processes used when new medical practices are developed and validated. One example of the first problem is the relative lack of medical research on "compositional data" -the type that characterizes leukocyte data. This omission results in erroneous use of data abundantly utilized in medicine, such as the blood cell differential. Emphasis on data output ‒not biomedical interpretation that facilitates the use of clinical data‒ exemplifies the second type of problems. Reliance on tools generated in other fields (but not validated within biomedical contexts) describes the last limitation. Because reductionism is associated with these problems, non-reductionist alternatives are reviewed as potential remedies. Data structuring (converting data into information) is considered a key element that may promote PM. To illustrate a process that includes data-information-knowledge and decision-making, previously published data on COVID-19 are utilized. It is suggested that ambiguity may be prevented or ameliorated. Provided that validations are grounded on biomedical knowledge, approaches that describe certain criteria - such as non-overlapping data intervals of patients that experience different outcomes, immunologically interpretable data, and distinct graphic patterns - can inform, at personalized bases, earlier and/or with fewer observations.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Medicina de Precisão/métodos , Leucócitos
5.
Front Vet Sci ; 10: 1270505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179332

RESUMO

Introduction: Control of zoonosis can benefit from geo-referenced procedures. Focusing on brucellosis, here the ability of two methods to distinguish disease dissemination patterns and promote cost-effective interventions was compared. Method: Geographical data on bovine, ovine and human brucellosis reported in the country of Georgia between 2014 and 2019 were investigated with (i) the Hot Spot (HS) analysis and (ii) a bio-geographical (BG) alternative. Results: More than one fourth of all sites reported cases affecting two or more species. While ruminant cases displayed different patterns over time, most human cases described similar geo-temporal features, which were associated with the route used by migrant shepherds. Other human cases showed heterogeneous patterns. The BG approach identified small areas with a case density twice as high as the HS method. The BG method also identified, in 2018, a 2.6-2.99 higher case density in zoonotic (human and non-human) sites than in non-zoonotic sites (which only reported cases affecting a single species) -a finding that, if corroborated, could support cost-effective policy-making. Discussion: Three dissemination hypotheses were supported by the data: (i) human cases induced by sheep-related contacts; (ii) human cases probably mediated by contaminated milk or meat; and (iii) cattle and sheep that infected one another. This proof-of-concept provided a preliminary validation for a method that may support cost-effective interventions oriented to control zoonoses. To expand these findings, additional studies on zoonosis-related decision-making are recommended.

6.
Front Immunol ; 13: 794006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281033

RESUMO

To rapidly prognosticate and generate hypotheses on pathogenesis, leukocyte multi-cellularity was evaluated in SARS-CoV-2 infected patients treated in India or the United States (152 individuals, 384 temporal observations). Within hospital (<90-day) death or discharge were retrospectively predicted based on the admission complete blood cell counts (CBC). Two methods were applied: (i) a "reductionist" one, which analyzes each cell type separately, and (ii) a "non-reductionist" method, which estimates multi-cellularity. The second approach uses a proprietary software package that detects distinct data patterns generated by complex and hypothetical indicators and reveals each data pattern's immunological content and associated outcome(s). In the Indian population, the analysis of isolated cell types did not separate survivors from non-survivors. In contrast, multi-cellular data patterns differentiated six groups of patients, including, in two groups, 95.5% of all survivors. Some data structures revealed one data point-wide line of observations, which informed at a personalized level and identified 97.8% of all non-survivors. Discovery was also fostered: some non-survivors were characterized by low monocyte/lymphocyte ratio levels. When both populations were analyzed with the non-reductionist method, they displayed results that suggested survivors and non-survivors differed immunologically as early as hospitalization day 1.


Assuntos
Contagem de Células Sanguíneas/métodos , COVID-19/imunologia , SARS-CoV-2/fisiologia , Adulto , COVID-19/diagnóstico , COVID-19/mortalidade , Testes Diagnósticos de Rotina , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Medicina de Precisão , Estudos Retrospectivos , Software , Análise de Sobrevida , Estados Unidos
7.
Methods ; 195: 113-119, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492300

RESUMO

The protracted COVID 19 pandemic may indicate failures of scientific methodologies. Hoping to facilitate the evaluation and/or update of methods relevant in Biomedicine, several aspects of scientific processes are here explored. First, the background is reviewed. In particular, eight topics are analyzed: (i) the history of Higher Education models in reference to the pursuit of science and the type of student cognition pursued, (ii) whether explanatory or actionable knowledge is emphasized depending on the well- or ill-defined nature of problems, (iii) the role of complexity and dynamics, (iv) how differences between Biology and other fields influence methodologies, (v) whether theory, hypotheses or data drive scientific research, (vi) whether Biology is reducible to one or a few factors, (vii) the fact that data, to become actionable knowledge, require structuring, and (viii) the need of inter-/trans-disciplinary knowledge integration. To illustrate how these topics interact, a second section describes four temporal stages of scientific methods: conceptualization, operationalization, validation and evaluation. They refer to the transition from abstract (non-measurable) concepts (such as 'health') to the selection of concrete (measurable) operations (such as 'quantification of ́anti-virus specific antibody titers'). Conceptualization is the process that selects concepts worth investigating, which continues as operationalization when data-producing variables viewed to reflect critical features of the concepts are chosen. Because the operations selected are not necessarily valid, informative, and may fail to solve problems, validations and evaluations are critical stages, which require inter/trans-disciplinary knowledge integration. It is suggested that data structuring can substantially improve scientific methodologies applicable in Biology, provided that other aspects here mentioned are also considered. The creation of independent bodies meant to evaluate biologically oriented scientific methods is recommended.


Assuntos
Biologia/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Projetos de Pesquisa , Biologia/tendências , Humanos , Projetos de Pesquisa/tendências
9.
Methods ; 195: 3-14, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34029715

RESUMO

More than 130,000 peer-reviewed studies have been published within one year after COVID-19 emerged in many countries. This large and rapidly growing field may overwhelm the synthesizing abilities of both researchers and policy-makers. To provide a sinopsis, prevent errors, and detect cognitive gaps that may require interdisciplinary research methods, the literature on COVID-19 is summarized, twice. The overall purpose of this study is to generate a dialogue meant to explain the genesis of and/or find remedies for omissions and contradictions. The first review starts in Biology and ends in Policy. Policy is chosen as a destination because it is the setting where cognitive integration must occur. The second review follows the opposite path: it begins with stated policies on COVID-19 and then their assumptions and disciplinary relationships are identified. The purpose of this interdisciplinary method on methods is to yield a relational and explanatory view of the field -one strategy likely to be incomplete but usable when large bodies of literature need to be rapidly summarized. These reviews identify nine inter-related problems, research needs, or omissions, namely: (1) nation-wide, geo-referenced, epidemiological data collection systems (open to and monitored by the public); (2) metrics meant to detect non-symptomatic cases -e.g., test positivity-; (3) cost-benefit oriented methods, which should demonstrate they detect silent viral spreaders even with limited testing; (4) new personalized tests that inform on biological functions and disease correlates, such as cell-mediated immunity, co-morbidities, and immuno-suppression; (5) factors that influence vaccine effectiveness; (6) economic predictions that consider the long-term consequences likely to follow epidemics that growth exponentially; (7) the errors induced by self-limiting and/or implausible paradigms, such as binary and reductionist approaches; (8) new governance models that emphasize problem-solving skills, social participation, and the use of scientific knowledge; and (9) new educational programs that utilize visual aids and audience-specific communication strategies. The analysis indicates that, to optimally address these problems, disciplinary and social integration is needed. By asking what is/are the potential cause(s) and consequence(s) of each issue, this methodology generates visualizations that reveal possible relationships as well as omissions and contradictions. While inherently limited in scope and likely to become obsolete, these shortcomings are avoided when this 'method on methods' is frequently practiced. Open-ended, inter-/trans-disciplinary perspectives and broad social participation may help researchers and citizens to construct, de-construct, and re-construct COVID-19 related research.


Assuntos
Pesquisa Biomédica/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Política de Saúde , Pesquisa Interdisciplinar/métodos , Animais , Pesquisa Biomédica/normas , Pesquisa Biomédica/tendências , COVID-19/imunologia , Política de Saúde/tendências , Humanos , Imunidade Coletiva/fisiologia , Pesquisa Interdisciplinar/normas , Pesquisa Interdisciplinar/tendências
10.
Int J Infect Dis ; 96: 519-523, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32470603

RESUMO

OBJECTIVES: To control epidemics, sites more affected by mortality should be identified. METHODS: Defining epidemic nodes as areas that included both most fatalities per time unit and connections, such as highways, geo-temporal Chinese data on the COVID-19 epidemic were investigated with linear, logarithmic, power, growth, exponential, and logistic regression models. A z-test compared the slopes observed. RESULTS: Twenty provinces suspected to act as epidemic nodes were empirically investigated. Five provinces displayed synchronicity, long-distance connections, directionality and assortativity - network properties that helped discriminate epidemic nodes. The rank I node included most fatalities and was activated first. Fewer deaths were reported, later, by rank II and III nodes, while the data from rank I-III nodes exhibited slopes, the data from the remaining provinces did not. The power curve was the best fitting model for all slopes. Because all pairs (rank I vs. rank II, rank I vs. rank III, and rank II vs. rank III) of epidemic nodes differed statistically, rank I-III epidemic nodes were geo-temporally and statistically distinguishable. CONCLUSIONS: The geo-temporal progression of epidemics seems to be highly structured. Epidemic network properties can distinguish regions that differ in mortality. This real-time geo-referenced analysis can inform both decision-makers and clinicians.


Assuntos
Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Betacoronavirus , COVID-19 , China/epidemiologia , Infecções por Coronavirus/mortalidade , Humanos , Modelos Logísticos , Pandemias , Pneumonia Viral/mortalidade , SARS-CoV-2 , Análise Espaço-Temporal
11.
Int J Infect Dis ; 95: 352-360, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32205283

RESUMO

OBJECTIVES: Hoping to improve health-related effectiveness, a two-phase vaccination against rabies was designed and executed in northern Tanzania in 2018, which included geo-epidemiological and economic perspectives. METHODS: Considering the local bio-geography and attempting to rapidly establish a protective ring around a city at risk, the first phase intervened on sites surrounding that city, where the population density was lower than in the city at risk. The second phase vaccinated a rural area. RESULTS: No rabies-related case has been reported in the vaccinated areas for over a year post-immunisation; hence, the campaign is viewed as highly cost-effective. Other metrics included: rapid implementation (concluded in half the time spent on other campaigns) and the estimated cost per protected life, which was 3.28 times lower than in similar vaccinations. CONCLUSIONS: The adopted design emphasised local bio-geographical dynamics: it prevented the occurrence of an epidemic in a city with a higher demographic density than its surrounding area and it also achieved greater effectiveness than average interventions. These interdisciplinary, policy-oriented experiences have broad and immediate applications in settings of limited and/or time-sensitive (expertise, personnel, and time available to intervene) resources and conditions.


Assuntos
Programas de Imunização , Vacina Antirrábica/administração & dosagem , Raiva/prevenção & controle , Animais , Doenças do Gato/prevenção & controle , Gatos , Análise Custo-Benefício , Doenças do Cão/prevenção & controle , Cães , Feminino , Humanos , Programas de Imunização/economia , Raiva/economia , Raiva/transmissão , Vacina Antirrábica/economia , Tanzânia
12.
Artigo em Inglês | MEDLINE | ID: mdl-31394794

RESUMO

Approximately 1500 people die annually due to rabies in the United Republic of Tanzania. Moshi, in the Kilimanjaro Region, reported sporadic cases of human rabies between 2017 and 2018. In response and following a One Health approach, we implemented surveillance, monitoring, as well as a mass vaccinations of domestic pets concurrently in >150 villages, achieving a 74.5% vaccination coverage (n = 29, 885 dogs and cats) by September 2018. As of April 2019, no single human or animal case has been recorded. We have observed a disparity between awareness and knowledge levels of community members on rabies epidemiology. Self-adherence to protective rabies vaccination in animals was poor due to the challenges of costs and distances to vaccination centers, among others. Incidence of dog bites was high and only a fraction (65%) of dog bite victims (humans) received post-exposure prophylaxis. A high proportion of unvaccinated dogs and cats and the relative intense interactions with wild dog species at interfaces were the risk factors for seropositivity to rabies virus infection in dogs. A percentage of the previously vaccinated dogs remained unimmunized and some unvaccinated dogs were seropositive. Evidence of community engagement and multi-coordinated implementation of One Health in Moshi serves as an example of best practice in tackling zoonotic diseases using multi-level government efforts. The district-level establishment of the One Health rapid response team (OHRRT), implementation of a carefully structured routine vaccination campaign, improved health education, and the implementation of barriers between domestic animals and wildlife at the interfaces are necessary to reduce the burden of rabies in Moshi and communities with similar profiles.


Assuntos
Suscetibilidade a Doenças/veterinária , Doenças do Cão/epidemiologia , Conhecimentos, Atitudes e Prática em Saúde , Raiva/veterinária , Adolescente , Adulto , Idoso , Animais , Suscetibilidade a Doenças/epidemiologia , Doenças do Cão/prevenção & controle , Doenças do Cão/transmissão , Cães , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Propriedade , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/transmissão , Fatores de Risco , Estudos Soroepidemiológicos , Tanzânia/epidemiologia , Adulto Jovem
13.
Front Immunol ; 10: 1258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249569

RESUMO

Investigating disease pathogenesis and personalized prognostics are major biomedical needs. Because patients sharing the same diagnosis can experience different outcomes, such as survival or death, physicians need new personalized tools, including those that rapidly differentiate several inflammatory phases. To address these topics, a pattern recognition-based method (PRM) that follows an inverse problem approach was designed to assess, in <10 min, eight concepts: synergy, pleiotropy, complexity, dynamics, ambiguity, circularity, personalized outcomes, and explanatory prognostics (pathogenesis). By creating thousands of secondary combinations derived from blood leukocyte data, the PRM measures synergic, pleiotropic, complex and dynamic data interactions, which provide personalized prognostics while some undesirable features-such as false results and the ambiguity associated with data circularity-are prevented. Here, this method is compared to Principal Component Analysis (PCA) and evaluated with data collected from hantavirus-infected humans and birds that appeared to be healthy. When human data were examined, the PRM predicted 96.9 % of all surviving patients while PCA did not distinguish outcomes. Demonstrating applications in personalized prognosis, eight PRM data structures sufficed to identify all but one of the survivors. Dynamic data patterns also distinguished survivors from non-survivors, as well as one subset of non-survivors, which exhibited chronic inflammation. When the PRM explored avian data, it differentiated immune profiles consistent with no, early, or late inflammation. Yet, PCA did not recognize patterns in avian data. Findings support the notion that immune responses, while variable, are rather deterministic: a low number of complex and dynamic data combinations may be enough to, rapidly, unmask conditions that are neither directly observable nor reliably forecasted.


Assuntos
Doenças Transmissíveis/diagnóstico , Infecções por Hantavirus/diagnóstico , Inflamação/diagnóstico , Leucócitos/imunologia , Orthohantavírus/fisiologia , Animais , Doenças Transmissíveis/imunologia , Feminino , Orthohantavírus/patogenicidade , Infecções por Hantavirus/imunologia , Humanos , Inflamação/imunologia , Masculino , Medicina de Precisão , Valor Preditivo dos Testes , Análise de Componente Principal , Prognóstico , Aves Canoras , Virulência
15.
Front Immunol ; 8: 612, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620378

RESUMO

Evolution has conserved "economic" systems that perform many functions, faster or better, with less. For example, three to five leukocyte types protect from thousands of pathogens. To achieve so much with so little, biological systems combine their limited elements, creating complex structures. Yet, the prevalent research paradigm is reductionist. Focusing on infectious diseases, reductionist and non-reductionist views are here described. The literature indicates that reductionism is associated with information loss and errors, while non-reductionist operations can extract more information from the same data. When designed to capture one-to-many/many-to-one interactions-including the use of arrows that connect pairs of consecutive observations-non-reductionist (spatial-temporal) constructs eliminate data variability from all dimensions, except along one line, while arrows describe the directionality of temporal changes that occur along the line. To validate the patterns detected by non-reductionist operations, reductionist procedures are needed. Integrated (non-reductionist and reductionist) methods can (i) distinguish data subsets that differ immunologically and statistically; (ii) differentiate false-negative from -positive errors; (iii) discriminate disease stages; (iv) capture in vivo, multilevel interactions that consider the patient, the microbe, and antibiotic-mediated responses; and (v) assess dynamics. Integrated methods provide repeatable and biologically interpretable information.

16.
Front Immunol ; 7: 217, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375617

RESUMO

BACKGROUND: To extract more information, the properties of infectious disease data, including hidden relationships, could be considered. Here, blood leukocyte data were explored to elucidate whether hidden information, if uncovered, could forecast mortality. METHODS: Three sets of individuals (n = 132) were investigated, from whom blood leukocyte profiles and microbial tests were conducted (i) cross-sectional analyses performed at admission (before bacteriological tests were completed) from two groups of hospital patients, randomly selected at different time periods, who met septic criteria [confirmed infection and at least three systemic inflammatory response syndrome (SIRS) criteria] but lacked chronic conditions (study I, n = 36; and study II, n = 69); (ii) a similar group, tested over 3 days (n = 7); and (iii) non-infected, SIRS-negative individuals, tested once (n = 20). The data were analyzed by (i) a method that creates complex data combinations, which, based on graphic patterns, partitions the data into subsets and (ii) an approach that does not partition the data. Admission data from SIRS+/infection+ patients were related to 30-day, in-hospital mortality. RESULTS: The non-partitioning approach was not informative: in both study I and study II, the leukocyte data intervals of non-survivors and survivors overlapped. In contrast, the combinatorial method distinguished two subsets that, later, showed twofold (or larger) differences in mortality. While the two subsets did not differ in gender, age, microbial species, or antimicrobial resistance, they revealed different immune profiles. Non-infected, SIRS-negative individuals did not express the high-mortality profile. Longitudinal data from septic patients displayed the pattern associated with the highest mortality within the first 24 h post-admission. Suggesting inflammation coexisted with immunosuppression, one high-mortality sub-subset displayed high neutrophil/lymphocyte ratio values and low lymphocyte percents. A second high-mortality subset showed monocyte-mediated deficiencies. Numerous within- and between-subset comparisons revealed statistically significantly different immune profiles. CONCLUSION: While the analysis of non-partitioned data can result in information loss, complex (combinatorial) data structures can uncover hidden patterns, which guide data partitioning into subsets that differ in mortality rates and immune profiles. Such information can facilitate diagnostics, monitoring of disease dynamics, and evaluation of subset-specific, patient-specific therapies.

17.
PLoS One ; 11(7): e0159001, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27411058

RESUMO

BACKGROUND: Diagnostic errors can occur, in infectious diseases, when anti-microbial immune responses involve several temporal scales. When responses span from nanosecond to week and larger temporal scales, any pre-selected temporal scale is likely to miss some (faster or slower) responses. Hoping to prevent diagnostic errors, a pilot study was conducted to evaluate a four-dimensional (4D) method that captures the complexity and dynamics of infectious diseases. METHODS: Leukocyte-microbial-temporal data were explored in canine and human (bacterial and/or viral) infections, with: (i) a non-structured approach, which measures leukocytes or microbes in isolation; and (ii) a structured method that assesses numerous combinations of interacting variables. Four alternatives of the structured method were tested: (i) a noise-reduction oriented version, which generates a single (one data point-wide) line of observations; (ii) a version that measures complex, three-dimensional (3D) data interactions; (iii) a non-numerical version that displays temporal data directionality (arrows that connect pairs of consecutive observations); and (iv) a full 4D (single line-, complexity-, directionality-based) version. RESULTS: In all studies, the non-structured approach revealed non-interpretable (ambiguous) data: observations numerically similar expressed different biological conditions, such as recovery and lack of recovery from infections. Ambiguity was also found when the data were structured as single lines. In contrast, two or more data subsets were distinguished and ambiguity was avoided when the data were structured as complex, 3D, single lines and, in addition, temporal data directionality was determined. The 4D method detected, even within one day, changes in immune profiles that occurred after antibiotics were prescribed. CONCLUSIONS: Infectious disease data may be ambiguous. Four-dimensional methods may prevent ambiguity, providing earlier, in vivo, dynamic, complex, and personalized information that facilitates both diagnostics and selection or evaluation of anti-microbial therapies.


Assuntos
Doenças Transmissíveis/diagnóstico , Informática Médica/métodos , Animais , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Erros de Diagnóstico/prevenção & controle , Cães , Humanos , Leucócitos/citologia , Projetos Piloto , Análise Espaço-Temporal
18.
PLoS One ; 10(4): e0123674, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875169

RESUMO

BACKGROUND: The words 'infection' and 'inflammation' lack specific definitions. Here, such words are not defined. Instead, the ability to visualize host-microbial interactions was explored. METHODS: Leukocyte differential counts and four bacterial species (Staphylococcus aureus, Streptococcus dysgalactiae, Staphylococcus chromogenes, and Escherichia coli) were determined or isolated in a cross-sectional and randomized study conducted with 611 bovine milk samples. Two paradigms were evaluated: (i) the classic one, which measures non-structured (count or percent) data; and (ii) a method that, using complex data structures, detects and differentiates three-dimensional (3D) interactions among lymphocytes (L), macrophages (M), and neutrophils (N). RESULTS: Classic analyses failed to differentiate bacterial-positive (B+) from -negative (B-) observations: B- and B+ data overlapped, even when statistical significance was achieved. In contrast, the alternative approach showed distinct patterns, such as perpendicular data inflections, which discriminated microbial-negative/mononuclear cell-predominating (MCP) from microbial-positive/phagocyte-predominating (PP) subsets. Two PP subcategories were distinguished, as well as PP/culture-negative (false-negative) and MCP/culture-positive (false-positive) observations. In 3D space, MCP and PP subsets were perpendicular to one another, displaying ≥ 91% specificity or sensitivity. Findings supported five inferences: (i) disease is not always ruled out by negative bacterial tests; (ii) low total cell counts can coexist with high phagocyte percents; (iii) neither positive bacterial isolation nor high cell counts always coincide with PP profiles; (iv) statistical significance is not synonymous with discrimination; and (v) hidden relationships cannot be detected when simple (non-structured) data formats are used and statistical analyses are performed before data subsets are identified, but can be uncovered when complexity is investigated. CONCLUSIONS: Pattern recognition-based assessments can detect host-microbial interactions usually unobserved. Such cutoff-free, confidence interval-free, gold standard-free approaches provide interpretable information on complex entities, such as 'infection' and 'inflammation', even without definitions. To investigate disease dynamics, combinations of observational and experimental longitudinal studies, on human and non-human infections, are recommended.


Assuntos
Escherichia coli/química , Staphylococcus/química , Streptococcus/química , Animais , Bovinos , Estudos Transversais , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Feminino , Linfócitos/química , Linfócitos/citologia , Linfócitos/imunologia , Macrófagos/química , Macrófagos/citologia , Macrófagos/imunologia , Mastite Bovina/metabolismo , Mastite Bovina/microbiologia , Mastite Bovina/patologia , Leite/microbiologia , Neutrófilos/química , Neutrófilos/citologia , Neutrófilos/imunologia , Fagocitose , Staphylococcus/isolamento & purificação , Staphylococcus/metabolismo , Streptococcus/isolamento & purificação , Streptococcus/metabolismo
19.
Curr Pharm Des ; 21(16): 2122-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25760335

RESUMO

To evaluate new drugs, the immune system should be considered. Here we evaluated a proof-of-concept that uncovers bacterial-leukocyte interactions. Analyzing longitudinal leukocyte data from bovines infected with either methicillin-resistant (MRSA) or methicillin-susceptible (MSSA) Staphylococcus aureus, two methods were investigated: (i) an approach that assesses lymphocytes, monocytes, or neutrophils, separately, and (ii) a method that, using dimensionless indicators (products, ratios, or combinations derived from leukocyte data), explores the dynamics of leukocyte relationships in three-dimensional (3D) space and identifies data subsets of informative value. The classic approach not always distinguished infected from non-infected cows. In contrast, the alternative approach differentiated noninfected from infected animals and distinguished early MRSA from early MSSA and late MRSA infections. Discrimination was associated with the use of dimensionless indicators. When measured in 3D space, such indicators generated a very large number of combinations, which helped detect data subsets usually unobserved, such as non-overlapping infection-negative and -positive subsets, and several disease stages. The validity of such data subsets was determined with biologically interpretable data. This graphic, pattern recognition-based information system included but did not depend on any one number or variable. Because it can detect functions (relationships that involve two or more elements), in real time, if shown reproducible, the analysis of complex host-microbial dynamics could be used to evaluate antimicrobials.


Assuntos
Resistência a Meticilina/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Reconhecimento Automatizado de Padrão/métodos , Animais , Bovinos , Feminino , Estudos Longitudinais , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus/imunologia , Staphylococcus aureus/isolamento & purificação
20.
PLoS One ; 8(2): e53984, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437039

RESUMO

BACKGROUND: Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. METHODS: To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. RESULTS: In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D-, or microbial-negative) groups: D+ and D- data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D- data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. CONCLUSIONS: More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling.


Assuntos
Retroalimentação Fisiológica , Interações Hospedeiro-Patógeno/fisiologia , Biologia de Sistemas , Vertebrados/microbiologia , Vertebrados/virologia , Animais , Aves/virologia , Bovinos , Reações Falso-Negativas , Humanos , Malária/diagnóstico , Malária/parasitologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Prognóstico , Reprodutibilidade dos Testes , Especificidade da Espécie , Vertebrados/parasitologia , Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...