Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Adv ; 5(5): 1875-1879, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38444934

RESUMO

Micromotors have been proposed for applications such as targeted drug delivery, thrombolysis, or sensing. However, single micrormotors are limited in the amount of payload they can deliver or force they can exert. Swarms of micromotors can overcome many of these challenges, however creating and controlling such swarms presents many challenges of its own. In particular, utilizing swarms in fluid flows is of significant importance for biomedical or lab-on-chip applications. Here, the upstream mobility and swarm formation of light driven micromotors in microchannel flows is demonstrated with maximum speeds around 0.1 mm s-1. Additionally, the light actuated microrobots operate in fairly low concentrations of hydrogen peroxide of approximately 1%. The micromotors form swarms at the boundary of the locally applied light pattern and the swarms can be moved by translating the light up or downstream.

2.
ChemNanoMat ; 9(8)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38292294

RESUMO

Using a spatially varying light pattern with light activated semi-conductor based magnetic TiO2 micromotors, we study the difference in micromotor flux between illuminated and non-illuminated regions in the presence and absence of an applied magnetic field. We find that the magnetic field enhances the flux of the motors which we attribute to a straightening of the micromotor trajectories which decreases the time they spend in the illuminated region. We also demonstrate spatially patterned light-induced aggregation of the micromotors and study its time evolution at various micromotor concentrations. Although light induced aggregation has been observed previously, spatial patterning of aggregation demonstrates a further means of control which could be relevant to swarm control or self-assembly applications. Overall, these results draw attention to the effect of trajectory shape on the flux of active colloids as well as the concentration dependence of aggregation and its time dependence within a spatially patterned region, which is not only pertinent to self-assembly and swarm control, but also provides insight into the behavior of active matter systems with spatially varying activity levels.

3.
Soft Matter ; 17(35): 8195-8210, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525167

RESUMO

We present an experimental study combining particle tracking, active microrheology, and differential dynamic microscopy (DDM) to investigate the dynamics and rheology of an oil-water interface during biofilm formation by the bacteria Pseudomonas Aeruginosa PA14. The interface transitions from an active fluid dominated by the swimming motion of adsorbed bacteria at early age to an active viscoelastic system at late ages when the biofilm is established. The microrheology measurements using microscale magnetic rods indicate that the biofilm behaves as a viscoelastic solid at late age. The bacteria motility at the interface during the biofilm formation, which is characterized in the DDM measurements, evolves from diffusive motion at early age to constrained, quasi-localized motion at later age. Similarly, the mobility of passively moving colloidal spheres at the interface decreases significantly with increasing interface age and shows a dependence on sphere size after biofilm formation that is orders-of-magnitude larger than that expected in a homogeneous system in equilibrium. We attribute this anomalous size dependence to either length-scale-dependent rheology of the biofilm or widely differing effects of the bacteria activity on the motion of spheres of different sizes.


Assuntos
Biofilmes , Água , Bactérias , Pseudomonas aeruginosa , Reologia
4.
Soft Matter ; 16(40): 9331-9338, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32935705

RESUMO

The topological properties of many materials are central to their behavior. In intrinsically out-of-equilibrium active materials, the dynamics of topological defects can be particularly important. In this paper, local manipulation of the order, dynamics, and topological properties of microtubule-based active nematic films is demonstrated in a joint experimental and simulation study. Hydrodynamic stresses created by magnetically actuated rotation of disk-shaped colloids in proximity to the films compete with internal stresses in the active nematic, influencing the local motion of +1/2 charge topological defects that are intrinsic to the nematic order in the spontaneously turbulent active films. Sufficiently large applied stresses drive the formation of +1 charge topological vortices through the merger of two +1/2 defects. The directed motion of the defects is accompanied by ordering of the vorticity and velocity of the active flows within the film that is qualitatively unlike the response of passive viscous films. Many features of the film's response to the stress are captured by lattice Boltzmann simulations, providing insight into the anomalous viscoelastic nature of the active nematic. The topological vortex formation is accompanied by a rheological instability in the film that leads to significant increase in the flow velocities. Comparison of the velocity profile in vicinity of the vortex with fluid-dynamics calculations provides an estimate of the film viscosity.

5.
Soft Matter ; 11(21): 4189-96, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25875803

RESUMO

We have investigated the mobility of discoidal colloidal particles sedimenting within cholesteric finger textures formed by mixtures of the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) and the chiral dopant 4-(2-methylbutyl)-4'-cyanobiphenyl (CB15) with cholesteric pitch p between 24 and 114 µm. The nickel disks, with radius 17 µm and thickness 300 nm, displayed varied transport behavior that depended on the size of the pitch and the orientation of the gravitational force with respect to the cholesteric axis. In textures with small pitch (p < 40 µm), the disks moved perpendicular to the axis irrespective of the orientation of gravity as a result of an elastic retarding force that prevented motion along the axis. In textures with larger pitch, the disks similarly moved perpendicular to the axis when the angle between the force and axis was large. When the angle was small, the disks displayed stick-slip motion caused by periodic yielding of the finger texture. A model considering viscous drag on the particles and the elastic energy cost of deforming the finger texture describes the stick-slip motion accurately. The effective drag viscosities obtained from the disk motion are anomalously large compared with those of pure nematic 5CB indicating a large contribution to the dissipation from the motion of disclinations in the texture in the vicinity of the translating disks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...