Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36889811

RESUMO

BACKGROUND: The success of HER2-positive (HER2+) breast cancer treatment with trastuzumab, an antibody that targets HER2, relies on immune response. We demonstrated that TNFα induces mucin 4 (MUC4) expression, which shields the trastuzumab epitope on the HER2 molecule decreasing its therapeutic effect. Here, we used mouse models and samples from HER2+ breast cancer patients to unravel MUC4 participation in hindering trastuzumab effect by fostering immune evasion. METHODS: We used a dominant negative TNFα inhibitor (DN) selective for soluble TNFα (sTNFα) together with trastuzumab. Preclinical experiments were performed using two models of conditionally MUC4-silenced tumors to characterize the immune cell infiltration. A cohort of 91 patients treated with trastuzumab was used to correlate tumor MUC4 with tumor-infiltrating lymphocytes. RESULTS: In mice bearing de novo trastuzumab-resistant HER2+ breast tumors, neutralizing sTNFα with DN induced MUC4 downregulation. Using the conditionally MUC4-silenced tumor models, the antitumor effect of trastuzumab was reinstated and the addition of TNFα-blocking agents did not further decrease tumor burden. DN administration with trastuzumab modifies the immunosuppressive tumor milieu through M1-like phenotype macrophage polarization and NK cells degranulation. Depletion experiments revealed a cross-talk between macrophages and NK cells necessary for trastuzumab antitumor effect. In addition, tumor cells treated with DN are more susceptible to trastuzumab-dependent cellular phagocytosis. Finally, MUC4 expression in HER2+ breast cancer is associated with immune desert tumors. CONCLUSIONS: These findings provide rationale to pursue sTNFα blockade combined with trastuzumab or trastuzumab drug conjugates for MUC4+ and HER2+ breast cancer patients to overcome trastuzumab resistance.


Assuntos
Mucina-4 , Neoplasias , Camundongos , Animais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Regulação para Baixo , Mucina-4/genética , Mucina-4/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor ErbB-2 , Linhagem Celular Tumoral , Terapia de Imunossupressão , Neoplasias/tratamento farmacológico
4.
Life Sci ; 314: 121287, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526044

RESUMO

AIMS: Photodynamic therapy (PDT) is a treatment modality for several cancers involving the administration of a tumour-localising photosensitiser (PS) and its subsequent activation by light, resulting in tumour damage. Ras oncogenes have been strongly associated with chemo- and radio-resistance. Based on the described roles of adhesion and cell morphology on drug resistance, we studied if the differences in shape, cell-extracellular matrix and cell-cell adhesion induced by Ras transfection, play a role in the resistance to PDT. MATERIALS AND METHODS: We employed the human normal breast HB4a cells transfected with H-RAS and a panel of five PSs. KEY FINDINGS: We found that resistance to PDT of the HB4a-Ras cells employing all the PSs, increased between 1.3 and 2.5-fold as compared to the parental cells. There was no correlation between resistance and intracellular PS levels or PS intracellular localisation. Even when Ras-transfected cells present lower adherence to the ECM proteins, this does not make them more sensitive to PDT or chemotherapy. On the contrary, a marked gain of resistance to PDT was observed in floating cells as compared to adhesive cells, accounting for the higher ability conferred by Ras to survive in conditions of decreased cell-extracellular matrix interactions. HB4a-Ras cells displayed disorganisation of actin fibres, mislocalised E-cadherin and vinculin and lower expression of E-cadherin and ß1-integrin as compared to HB4a cells. SIGNIFICANCE: Knowledge of the mechanisms of resistance to photodamage in Ras-overexpressing cells may lead to the optimization of the combination of PDT with other treatments.


Assuntos
Neoplasias da Mama , Fotoquimioterapia , Humanos , Feminino , Adesão Celular , Genes ras , Neoplasias da Mama/patologia , Fármacos Fotossensibilizantes/farmacologia , Caderinas
5.
BMC Cancer ; 17(1): 895, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29281999

RESUMO

BACKGROUND: Invasive micropapillary carcinoma of the breast (IMPC) is a histological tumor variant that occurs with low frequency characterized by an inside-out formation of tumor clusters with a pseudopapillary arrangement. IMPC is an aggressive tumor with poor clinical outcome. In addition, this histological subtype usually expresses human epidermal growth factor receptor 2 (HER2) which also correlates with a more aggressive tumor. In this work we studied the clinical significance of IMPC in HER2-positive breast cancer patients treated with adjuvant trastuzumab. We also analyzed mucin 4 (MUC4) expression as a novel biomarker to identify IMPC. METHODS: We retrospectively studied 86 HER2-positive breast cancer patients treated with trastuzumab and chemotherapy in the adjuvant setting. We explored the association of the IMPC component with clinicopathological parameters at diagnosis and its prognostic value. We compared MUC4 expression in IMPC with respect to other histological breast cancer subtypes by immunohistochemistry. RESULTS: IMPC, either as a pure entity or associated with invasive ductal carcinoma (IDC), was present in 18.6% of HER2-positive cases. It was positively correlated with estrogen receptor expression and tumor size and inversely correlated with patient's age. Disease-free survival was significantly lower in patients with IMPC (hazard ratio = 2.6; 95%, confidence interval 1.1-6.1, P = 0.0340). MUC4, a glycoprotein associated with metastasis, was strongly expressed in all IMPC cases tested. IMPC appeared as the histological breast cancer subtype with the highest MUC4 expression compared to IDC, lobular and mucinous carcinoma. CONCLUSION: In HER2-positive breast cancer, the presence of IMPC should be carefully examined. As it is often not informed, because it is relatively difficult to identify or altogether overlooked, we propose MUC4 expression as a useful biomarker to highlight IMPC presence. Patients with MUC4-positive tumors with IMPC component should be more frequently monitored and/or receive additional therapies.


Assuntos
Neoplasias da Mama/mortalidade , Carcinoma Ductal de Mama/mortalidade , Carcinoma Papilar/mortalidade , Mucina-4/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Adulto , Idoso , Antineoplásicos Imunológicos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Carcinoma Papilar/tratamento farmacológico , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Estudos de Casos e Controles , Quimioterapia Adjuvante , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Estudos Retrospectivos , Taxa de Sobrevida
6.
Clin Cancer Res ; 23(3): 636-648, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27698002

RESUMO

PURPOSE: Although trastuzumab administration improved the outcome of HER2-positive breast cancer patients, resistance events hamper its clinical benefits. We demonstrated that TNFα stimulation in vitro induces trastuzumab resistance in HER2-positive breast cancer cell lines. Here, we explored the mechanism of TNFα-induced trastuzumab resistance and the therapeutic strategies to overcome it. EXPERIMENTAL DESIGN: Trastuzumab-sensitive breast cancer cells, genetically engineered to stably overexpress TNFα, and de novo trastuzumab-resistant tumors, were used to evaluate trastuzumab response and TNFα-blocking antibodies effectiveness respectively. Immunohistochemistry and antibody-dependent cell cytotoxicity (ADCC), together with siRNA strategy, were used to explore TNFα influence on the expression and function of its downstream target, mucin 4 (MUC4). The clinical relevance of MUC4 expression was studied in a cohort of 78 HER2-positive breast cancer patients treated with adjuvant trastuzumab. RESULTS: TNFα overexpression turned trastuzumab-sensitive cells and tumors into resistant ones. Histopathologic findings revealed mucin foci in TNFα-producing tumors. TNFα induced upregulation of MUC4 that reduced trastuzumab binding to its epitope and impaired ADCC. Silencing MUC4 enhanced trastuzumab binding, increased ADCC, and overcame trastuzumab and trastuzumab-emtansine antiproliferative effects in TNFα-overexpressing cells. Accordingly, administration of TNFα-blocking antibodies downregulated MUC4 and sensitized de novo trastuzumab-resistant breast cancer cells and tumors to trastuzumab. In HER2-positive breast cancer samples, MUC4 expression was found to be an independent predictor of poor disease-free survival (P = 0.008). CONCLUSIONS: We identified TNFα-induced MUC4 expression as a novel trastuzumab resistance mechanism. We propose MUC4 expression as a predictive biomarker of trastuzumab efficacy and a guide to combination therapy of TNFα-blocking antibodies with trastuzumab. Clin Cancer Res; 23(3); 636-48. ©2016 AACR.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica , Mucina-4/fisiologia , Proteínas de Neoplasias/análise , Receptor ErbB-2/análise , Trastuzumab/farmacologia , Fator de Necrose Tumoral alfa/fisiologia , Ado-Trastuzumab Emtansina , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Imunológicos/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/farmacologia , Maitansina/análogos & derivados , Maitansina/farmacologia , Camundongos , Camundongos Nus , Mucina-4/biossíntese , Mucina-4/genética , Proteínas de Neoplasias/antagonistas & inibidores , Interferência de RNA , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/patologia , Trastuzumab/metabolismo , Trastuzumab/uso terapêutico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Endocr Relat Cancer ; 20(2): 197-212, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23329648

RESUMO

Stat3 is a signaling node for multiple oncogenic pathways and is therefore frequently active in breast cancer. As experimental and clinical evidence reveals that progestins are key players in controlling mammary gland tumorigenesis, we studied Stat3 participation in this event. We have previously shown that progestins induce Stat3Tyr705 phosphorylation and its transcriptional activation in breast cancer cells. In this study, we demonstrate that progestins also induce Stat3 phosphorylation at Ser727 residue, which occurs via activation of c-Src/p42/p44 MAPK pathways in murine progestin-dependent C4HD cells and in T-47D cells. Expression of a Stat3S727A vector, which carries a serine-to-alanine substitution at codon 727, shows that Stat3Ser727 phosphorylation is required for full transcriptional activation of cyclin D1 gene expression by progestins and for in vivo Stat3 recruitment on cyclin D1 promoter. Transfection of Stat3S727A in murine and human breast cancer cells abolished progestin-induced in vitro and in vivo growth. Moreover, we found a positive correlation between progesterone receptor expression and nuclear localization of Stat3Ser727 phosphorylation in breast cancer biopsies. These data highlight Stat3 phosphorylation in Ser727 residue as a nongenomic action by progestins, necessary to promote breast cancer growth.


Assuntos
Acetato de Medroxiprogesterona/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Neoplasias da Mama/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Fator de Transcrição STAT3/genética
8.
J Immunol ; 189(3): 1162-72, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22753933

RESUMO

Aberrant Stat3 activation and signaling contribute to malignant transformation by promoting cell cycle progression, inhibiting apoptosis, and mediating tumor immune evasion. Stat3 inhibition in tumor cells induces the expression of chemokines and proinflammatory cytokines, so we proposed to apply Stat3-inhibited breast cancer cells as a source of immunogens to induce an antitumor immune response. Studies were performed in two murine breast cancer models in which Stat3 is activated: progestin-dependent C4HD cells and 4T1 cells. We immunized BALB/c mice with irradiated cancer cells previously transfected with a dominant-negative Stat3 vector (Stat3Y705F) in either a prophylactic or a therapeutic manner. Prophylactic administration of breast cancer cells transfected with Stat3Y705F (Stat3Y705F-breast cancer cells) inhibited primary tumor growth compared with administration of empty vector-transfected cells in both models. In the 4T1 model, 50% of the challenged mice were tumor free, and the incidence of metastasis decreased by 90%. In vivo assays of C4HD tumors showed that the antitumor immune response involves the participation of CD4(+) T cells and cytotoxic NK cells. Therapeutic immunization with Stat3Y705F-breast cancer cells inhibited tumor growth, promoted tumor cell differentiation, and decreased metastasis. Furthermore, inhibition of Stat3 activation in breast cancer cells induced cellular senescence, contributing to their immunogenic phenotype. In this work, we provide preclinical proof of concept that ablating Stat3 signaling in breast cancer cells results in an effective immunotherapy against breast cancer growth and metastasis. Moreover, our findings showing that Stat3 inactivation results in induction of a cellular senescence program disclose a potential mechanism for immunotherapy research.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Senescência Celular/imunologia , Marcação de Genes , Células Matadoras Naturais/imunologia , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/terapia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Marcação de Genes/métodos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Cultura Primária de Células , Fator de Transcrição STAT3
9.
Breast Cancer Res ; 14(3): R77, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22583478

RESUMO

INTRODUCTION: Experimental and clinical evidence points to a critical role of progesterone and the nuclear progesterone receptor (PR) in controlling mammary gland tumorigenesis. However, the molecular mechanisms of progesterone action in breast cancer still remain elusive. On the other hand, micro RNAs (miRNAs) are short ribonucleic acids which have also been found to play a pivotal role in cancer pathogenesis. The role of miRNA in progestin-induced breast cancer is poorly explored. In this study we explored progestin modulation of miRNA expression in mammary tumorigenesis. METHODS: We performed a genome-wide study to explore progestin-mediated regulation of miRNA expression in breast cancer. miR-16 expression was studied by RT-qPCR in cancer cell lines with silenced PR, signal transducer and activator of transcription 3 (Stat3) or c-Myc, treated or not with progestins. Breast cancer cells were transfected with the precursor of miR-16 and proliferation assays, Western blots or in vivo experiments were performed. Target genes of miR-16 were searched through a bioinformatical approach, and the study was focused on cyclin E. Reporter gene assays were performed to confirm that cyclin E 3'UTR is a direct target of miR-16. RESULTS: We found that nine miRNAs were upregulated and seven were downregulated by progestin in mammary tumor cells. miR-16, whose function as a tumor suppressor in leukemia has already been shown, was identified as one of the downregulated miRNAs in murine and human breast cancer cells. Progestin induced a decrease in miR-16 levels via the classical PR and through a hierarchical interplay between Stat3 and the oncogenic transcription factor c-Myc. A search for miR-16 targets showed that the CCNE1 gene, encoding the cell cycle regulator cyclin E, contains conserved putative miR-16 target sites in its mRNA 3' UTR region. We found that, similar to the molecular mechanism underlying progestin-modulated miR-16 expression, Stat3 and c-Myc participated in the induction of cyclin E expression by progestin. Moreover, overexpression of miR-16 abrogated the ability of progestin to induce cyclin E upregulation, revealing that cyclin E is a novel target of miR-16 in breast cancer. Overexpression of miR-16 also inhibited progestin-induced breast tumor growth in vitro and in vivo, demonstrating for the first time, a role for miR-16 as a tumor suppressor in mammary tumorigenesis. We also found that the ErbB ligand heregulin (HRG) downregulated the expression of miR-16, which then participates in the proliferative activity of HRG in breast tumor cells. CONCLUSIONS: In this study, we reveal the first progestin-regulated miRNA expression profile and identify a novel role for miR-16 as a tumor suppressor in progestin- and growth factor-induced growth in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Progestinas/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ciclina E/genética , Ciclina E/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Regulação para Cima
10.
Steroids ; 76(4): 381-92, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21184768

RESUMO

Interactions between progesterone receptor (PR) and signal transducer and activator of transcription 3 (Stat3)-mediated signaling pathways have already been described. In the present study, we explored the capacity of Stat3 to functionally interact with progesterone receptor (PR) and modulate PR transcriptional activation in breast cancer cells. We found that the synthetic progestin medroxyprogesterone acetate (MPA) induced the association of a PR/Stat3 complex in which Stat3 acts as a coactivator of PR. We demonstrated that Stat3 activation is required for MPA modulation of the endogenous genes bcl-X and p21(CIP1) which are involved in MPA-induced cell cycle regulation. Stat3 activity as a coactivator of PR was observed in both the classical and nonclassical ligand activated-PR transcriptional mechanisms, since the effects described were identified in the bcl-X promoter which contains a progesterone responsive element and in the p21(CIP1) promoter which carries Sp1 binding sites where PR is recruited via the transcription factor Sp1. The data herein presented identifies a potential therapeutic intervention for PR-positive breast tumors consisting of targeting Stat3 function or PR/Stat3 interaction which will result in the inhibition of PR function.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Receptores de Progesterona/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Receptores de Progesterona/agonistas , Elementos de Resposta , Ativação Transcricional , Regulação para Cima , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
11.
Mol Cell Biol ; 30(23): 5456-72, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20876300

RESUMO

Progesterone receptor (PR) and ErbB-2 bidirectional cross talk participates in breast cancer development. Here, we identified a new mechanism of the PR and ErbB-2 interaction involving the PR induction of ErbB-2 nuclear translocation and the assembly of a transcriptional complex in which ErbB-2 acts as a coactivator of Stat3. We also highlighted that the function of ErbB-2 as a Stat3 coactivator drives progestin-induced cyclin D1 promoter activation. Notably, PR is also recruited together with Stat3 and ErbB-2 to the cyclin D1 promoter, unraveling a new and unexpected nonclassical PR genomic mechanism. The assembly of the nuclear Stat3/ErbB-2 transcriptional complex plays a key role in the proliferation of breast tumors with functional PR and ErbB-2. Our findings reveal a novel therapeutic intervention for PR- and ErbB-2-positive breast tumors via the specific blockage of ErbB-2 nuclear translocation.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Neoplasias Mamárias Experimentais/etiologia , Neoplasias Mamárias Experimentais/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Fator de Transcrição STAT3/metabolismo , Transativadores/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Sequência de Bases , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Genes bcl-1 , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Acetato de Medroxiprogesterona/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Progestinas/toxicidade , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos
12.
Breast Cancer Res Treat ; 122(1): 111-24, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19760502

RESUMO

Tumor necrosis factor alpha (TNFalpha) is a pleiotropic cytokine which, acting locally, induces tumor growth. Accumulating evidence, including our findings, showed that TNFalpha is mitogenic in breast cancer cells in vitro and in vivo. In the present study, we explored TNFalpha involvement on highly aggressive ErbB-2-overexpressing breast cancer cells. We found that TNFalpha induces ErbB-2 phosphorylation in mouse breast cancer C4HD cells and in the human breast cancer cell lines SK-BR-3 and BT-474. ErbB-2 phosphorylation at Tyr877 residue was mediated by TNFalpha-induced c-Src activation. Moreover, TNFalpha promoted ErbB-2/ErbB-3 heterocomplex formation, Akt activation and NF-kappaB transcriptional activation. Inhibition of ErbB-2 by addition of AG825, an epidermal growth factor receptor/ErbB-2-tyrosine kinase inhibitor, or knockdown of ErbB-2 by RNA interference strategy, blocked TNFalpha-induced NF-kappaB activation and proliferation. However, the humanized monoclonal antibody anti-ErbB-2 Herceptin could not inhibit TNFalpha ability to promote breast cancer growth. Interestingly, our work disclosed that TNFalpha is able to transactivate ErbB-2 and use it as an obligatory downstream signaling molecule in the generation of mitogenic signals. As TNFalpha has been shown to be present in the tumor microenvironment of a significant proportion of human infiltrating breast cancers, our findings would have clinical implication in ErbB-2-positive breast cancer treatment.


Assuntos
Neoplasias da Mama/genética , Genes erbB-2 , NF-kappa B/metabolismo , Proteínas de Neoplasias/biossíntese , Receptor ErbB-2/biossíntese , Receptor ErbB-2/fisiologia , Ativação Transcricional , Fator de Necrose Tumoral alfa/fisiologia , Animais , Neoplasias da Mama/patologia , Divisão Celular , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Dimerização , Feminino , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Fosforilação , Proteínas Quinases/fisiologia , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/farmacologia , Receptor ErbB-2/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
13.
Mol Cell Biol ; 29(5): 1249-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19103753

RESUMO

Cross talk between the steroid hormone receptors for estrogen and progesterone (PR) and the ErbB family of receptor tyrosine kinases appears to be a hallmark of breast cancer growth, but its underlying mechanism remains poorly explored. Here we have highlighted signal transducer and activator of transcription 3 (Stat3) as a key protein activated by heregulin (HRG), a ligand of the ErbB receptors, through co-opted, ligand-independent PR function as a signaling molecule. Stat3 activation was an absolute requirement in HRG-induced mammary tumor growth, and targeting Stat3 effectively inhibited growth of breast cancer cells with activated HRG/ErbB-2 and PR. Our findings unravel a novel potential therapeutic intervention in PR- and ErbB-2-positive breast tumors, involving the specific blockage of PR signaling activity.


Assuntos
Proliferação de Células , Neoplasias Mamárias Animais/patologia , Neuregulina-1/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Feminino , Neoplasias Mamárias Animais/etiologia , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais
14.
Exp Cell Res ; 314(3): 509-29, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18061162

RESUMO

Tumor necrosis factor alpha (TNF alpha) enhances proliferation of chemically-induced mammary tumors and of T47D human cell line through not fully understood pathways. Here, we explored the intracellular signaling pathways triggered by TNF alpha, the participation of TNF alpha receptor (TNFR) 1 and TNFR2 and the molecular mechanism leading to breast cancer growth. We demonstrate that TNFalpha induced proliferation of C4HD murine mammary tumor cells and of T47D cells through the activation of p42/p44 MAPK, JNK, PI3-K/Akt pathways and nuclear factor-kappa B (NF-kappa B) transcriptional activation. A TNF alpha-specific mutein selectively binding to TNFR1 induced p42/p44 MAPK, JNK, Akt activation, NF-kappa B transcriptional activation and cell proliferation, just like wild-type TNF alpha, while a mutein selective for TNFR2 induced only p42/p44 MAPK activation. Interestingly, blockage of TNFR1 or TNFR2 with specific antibodies was enough to impair TNF alpha signaling and biological effect. Moreover, in vivo TNF alpha administration supported C4HD tumor growth. We also demonstrated, for the first time, that injection of a selective inhibitor of NF-kappa B activity, Bay 11-7082, resulted in regression of TNF alpha-promoted tumor. Bay 11-7082 blocked TNF alpha capacity to induce cell proliferation and up-regulation of cyclin D1 and of Bcl-xLin vivo and in vitro. Our results reveal evidence for TNF alpha as a breast tumor promoter, and provide novel data for a future therapeutic approach using TNF alpha antagonists and NF-kappa B pharmacological inhibitors in established breast cancer treatment.


Assuntos
Carcinoma Ductal de Mama/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Mamárias Experimentais/fisiopatologia , Neoplasias Hormônio-Dependentes/fisiopatologia , Receptores Tipo I de Fatores de Necrose Tumoral/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinógenos , Carcinoma Ductal de Mama/induzido quimicamente , Carcinoma Ductal de Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/tratamento farmacológico , Acetato de Medroxiprogesterona , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neoplasias Hormônio-Dependentes/induzido quimicamente , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Sulfonas/farmacologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/imunologia
15.
J Immunol ; 176(6): 3426-37, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16517711

RESUMO

We have demonstrated that in vivo administration of phosphorothioate antisense oligodeoxynucleotides (AS[S]ODNs) to type I insulin-like growth factor receptor (IGF-IR) mRNA resulted in inhibition of C4HD breast cancer growth in BALB/c mice. The present study focused on whether in vivo administration of C4HD tumor cells pretreated with IGF-IR AS[S]ODN and irradiated could provide protection against C4HD wild-type tumor challenge and also on elucidating the mechanism mediating this effect. Our results showed that mice immunized with IGF-IR AS[S]ODN-treated C4HD cells experienced a growth inhibition of 53.4%, 61.6%, and 60.2% when compared with PBS-treated mice, wild-type C4HD cell-injected mice, or phosphorothioate sense oligodeoxynucleotide-treated C4HD cell-injected mice, respectively. The protective effect was C4HD-specific, because no cross-protection was observed against other syngeneic mammary tumor lines. The lack of protection against tumor formation in nude mice indicated that T cells were involved in the antitumoral response. Furthermore, cytotoxicity and splenocyte proliferation assays demonstrated that a cellular CD8(+)-dependent immune response, acting through the Fas/Fas ligand death pathway, could be mediating the antitumor effect induced by immunization with AS[S]ODN-treated cells. Immunization also induced splenocytes to produce Ag-dependent IFN-gamma, indicating the presence of a type 1 response. We demonstrated for the first time that IGF-IR AS[S]ODN treatment of breast cancer cells induced expression of CD86 and heat shock protein 70 molecules, both involved in the induction of the immunogenic phenotype. Immunization with these tumor immunogens imparted protection against parental tumor growth through activation of a specific immune response.


Assuntos
Apoptose , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Glicoproteínas de Membrana/metabolismo , Receptor IGF Tipo 1/deficiência , Linfócitos T Citotóxicos/imunologia , Fatores de Necrose Tumoral/metabolismo , Receptor fas/metabolismo , Animais , Antígeno B7-2/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Vacinas Anticâncer/imunologia , Proliferação de Células , Células Cultivadas , Proteína Ligante Fas , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Imunização , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Oligodesoxirribonucleotídeos Antissenso/genética , Fenótipo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Linfócitos T Citotóxicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA