Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 60: 210-219, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28709984

RESUMO

Current clinical methods to treat articular cartilage lesions provide temporary relief of the symptoms but fail to permanently restore the damaged tissue. Tissue engineering, using mesenchymal stem cells (MSCs) combined with scaffolds and bioactive factors, is viewed as a promising method for repairing cartilage injuries. However, current tissue engineered constructs display inferior mechanical properties compared to native articular cartilage, which could be attributed to the lack of structural organization of the extracellular matrix (ECM) of these engineered constructs in comparison to the highly oriented structure of articular cartilage ECM. We previously showed that we can guide MSCs undergoing chondrogenesis to align using microscale guidance channels on the surface of a two-dimensional (2-D) collagen scaffold, which resulted in the deposition of aligned ECM within the channels and enhanced mechanical properties of the constructs. In this study, we developed a technique to roll 2-D collagen scaffolds containing MSCs within guidance channels in order to produce a large-scale, three-dimensional (3-D) tissue engineered cartilage constructs with enhanced mechanical properties compared to current constructs. After rolling the MSC-scaffold constructs into a 3-D cylindrical structure, the constructs were cultured for 21days under chondrogenic culture conditions. The microstructure architecture and mechanical properties of the constructs were evaluated using imaging and compressive testing. Histology and immunohistochemistry of the constructs showed extensive glycosaminoglycan (GAG) and collagen type II deposition. Second harmonic generation imaging and Picrosirius red staining indicated alignment of neo-collagen fibers within the guidance channels of the constructs. Mechanical testing indicated that constructs containing the guidance channels displayed enhanced compressive properties compared to control constructs without these channels. In conclusion, using a novel roll-up method, we have developed large scale MSC based tissue-engineered cartilage that shows microscale structural organization and enhanced compressive properties compared to current tissue engineered constructs. STATEMENT OF SIGNIFICANCE: Tissue engineered cartilage constructs made with human mesenchymal stem cells (hMSCs), scaffolds and bioactive factors are a promising solution to treat cartilage defects. A major disadvantage of these constructs is their inferior mechanical properties compared to the native tissue, which is likely due to the lack of structural organization of the extracellular matrix of the engineered constructs. In this study, we developed three-dimensional (3-D) cartilage constructs from rectangular scaffold sheets containing hMSCs in micro-guidance channels and characterized their mechanical properties and metabolic requirements. The work led to a novel roll-up method to embed 2-D microscale structures in 3-D constructs. Further, micro-guidance channels incorporated within the 3-D cartilage constructs led to the production of aligned cell-produced matrix and enhanced mechanical function.


Assuntos
Cartilagem/metabolismo , Condrogênese , Colágeno/química , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Cartilagem/citologia , Bovinos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia
2.
Micromachines (Basel) ; 6(3): 330-346, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34026281

RESUMO

Tissue engineering is viewed as a promising option for long-term repair of cartilage lesions, but current engineered cartilage constructs fail to match the mechanical properties of native tissue. The extracellular matrix of adult human articular cartilage contains highly organized collagen fibrils that enhance the mechanical properties of the tissue. Unlike articular cartilage, mesenchymal stem cell (MSC) based tissue engineered cartilage constructs lack this oriented microstructure and therefore display much lower mechanical strength. The goal of this study was to investigate the effect of biomolecular gradients and shear stress on MSCs undergoing chondrogenesis within a microfluidic device. Via poly(dimethyl siloxane) soft-lithography, microfluidic devices containing a gradient generator were created. Human MSCs were seeded within these chambers and exposed to flow-based transforming growth factor ß1 (TGF-ß1) gradients. When the MSCs were both confluent and exposed to shear stress, the cells aligned along the flow direction. Exposure to TGF-ß1 gradients led to chondrogenesis of MSCs, indicated by positive type II collagen staining. These results, together with a previous study that showed that aligned MSCs produce aligned collagen, suggest that oriented cartilage tissue structures with superior mechanical properties can be obtained by aligning MSCs along the flow direction and exposing MSCs to chondrogenic gradients.

3.
Tissue Eng Part A ; 19(9-10): 1081-90, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23157410

RESUMO

Tissue engineering is a possible method for long-term repair of cartilage lesions, but current tissue-engineered cartilage constructs have inferior mechanical properties compared to native cartilage. This problem may be due to the lack of an oriented structure in the constructs at the microscale that is present in the native tissue. In this study, we utilize contact guidance to develop constructs with microscale architecture for improved chondrogenesis and function. Stable channels of varying microscale dimensions were formed in collagen-based and polydimethylsiloxane membranes via a combination of microfabrication and soft-lithography. Human mesenchymal stem cells (MSCs) were selectively seeded in these channels. The chondrogenic potential of MSCs seeded in these channels was investigated by culturing them for 3 weeks under differentiating conditions, and then evaluating the subsequent synthesized tissue for mechanical function and by type II collagen immunohistochemistry. We demonstrate selective seeding of viable MSCs within the channels. MSC aligned and produced mature collagen fibrils along the length of the channel in smaller linear channels of widths 25-100 µm compared to larger linear channels of widths 500-1000 µm. Further, substrates with microchannels that led to cell alignment also led to superior mechanical properties compared to constructs with randomly seeded cells or selectively seeded cells in larger channels. The ultimate stress and modulus of elasticity of constructs with cells seeded in smaller channels increased by as much as fourfolds. We conclude that microscale guidance is useful to produce oriented cartilage structures with improved mechanical properties. These findings can be used to fabricate large clinically useful MSC-cartilage constructs with superior mechanical properties.


Assuntos
Cartilagem/citologia , Células-Tronco Mesenquimais/citologia , Adesão Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual/métodos
4.
Curr Biol ; 21(11): 933-41, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21600772

RESUMO

Mechanical forces influence homeostasis in virtually every tissue [1, 2]. Tendon, constantly exposed to variable mechanical force, is an excellent model in which to study the conversion of mechanical stimuli into a biochemical response [3-5]. Here we show in a mouse model of acute tendon injury and in vitro that physical forces regulate the release of active transforming growth factor (TGF)-ß from the extracellular matrix (ECM). The quantity of active TGF-ß detected in tissue exposed to various levels of tensile loading correlates directly with the extent of physical forces. At physiological levels, mechanical forces maintain, through TGF-ß/Smad2/3-mediated signaling, the expression of Scleraxis (Scx), a transcription factor specific for tenocytes and their progenitors. The gradual and temporary loss of tensile loading causes reversible loss of Scx expression, whereas sudden interruption, such as in transection tendon injury, destabilizes the structural organization of the ECM and leads to excessive release of active TGF-ß and massive tenocyte death, which can be prevented by the TGF-ß type I receptor inhibitor SD208. Our findings demonstrate a critical role for mechanical force in adult tendon homeostasis. Furthermore, this mechanism could translate physical force into biochemical signals in a much broader variety of tissues or systems in the body.


Assuntos
Mecanotransdução Celular/fisiologia , Traumatismos dos Tendões/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Morte Celular , Matriz Extracelular/metabolismo , Proteínas de Fluorescência Verde/análise , Camundongos , Estimulação Física , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Traumatismos dos Tendões/patologia , Fator de Crescimento Transformador beta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...