Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Cells Mol Dis ; 85: 102486, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32841841

RESUMO

To define morphological changes in carotid and cerebral arteries in sickle cell transgenic mice (SS) as they age, a combination of ultrasound and microcomputed tomography of plastinated arteries was used to quantify arterial dimensions and changes in mice 4, 12, and 24 weeks of age. 12-week SS mice had significantly larger common carotid artery diameters than AS mice, which continued through to the extracranial and intracranial portions of the internal carotid artery (ICA). There were also side specific differences in diameters between the left and right vessels. Significant ICA tapering along its length occurred by 12- and 24-weeks in SS mice, decreasing by as much as 70%. Significant narrowing along the length was also measured in SS anterior cerebral arteries at 12- and 24-weeks, but not AS. Collectively, these findings indicate that sickle cell anemia induces arterial remodeling in 12- and 24-weeks old mice. Catalog of measurements are also provided for the common carotid, internal carotid, anterior cerebral, and middle cerebral arteries for AS and SS genotypes, as a reference for other investigators using mathematical and computational models of age-dependent arterial complications caused by sickle cell anemia.


Assuntos
Anemia Falciforme/diagnóstico por imagem , Artérias Carótidas/diagnóstico por imagem , Artérias Cerebrais/diagnóstico por imagem , Envelhecimento , Anemia Falciforme/patologia , Animais , Artérias Carótidas/patologia , Artérias Cerebrais/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Transgênicos , Ultrassonografia , Microtomografia por Raio-X
2.
Arterioscler Thromb Vasc Biol ; 40(5): 1220-1230, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32160775

RESUMO

OBJECTIVE: Sickle cell anemia (SCA) causes chronic inflammation and multiorgan damage. Less understood are the arterial complications, most evident by increased strokes among children. Proteolytic mechanisms, biomechanical consequences, and pharmaceutical inhibitory strategies were studied in a mouse model to provide a platform for mechanistic and intervention studies of large artery damage due to sickle cell disease. Approach and Results: Townes humanized transgenic mouse model of SCA was used to test the hypothesis that elastic lamina and structural damage in carotid arteries increased with age and was accelerated in mice homozygous for SCA (sickle cell anemia homozygous genotype [SS]) due to inflammatory signaling pathways activating proteolytic enzymes. Elastic lamina fragmentation observed by 1 month in SS mice compared with heterozygous littermate controls (sickle cell trait heterozygous genotype [AS]). Positive immunostaining for cathepsin K, a powerful collagenase and elastase, confirmed accelerated proteolytic activity in SS carotids. Larger cross-sectional areas were quantified by magnetic resonance angiography and increased arterial compliance in SS carotids were also measured. Inhibiting JNK (c-jun N-terminal kinase) signaling with SP600125 significantly reduced cathepsin K expression, elastin fragmentation, and carotid artery perimeters in SS mice. By 5 months of age, continued medial thinning and collagen degradation was mitigated by treatment of SS mice with JNK inhibitor. CONCLUSIONS: Arterial remodeling due to SCA is mediated by JNK signaling, cathepsin proteolytic upregulation, and degradation of elastin and collagen. Demonstration in Townes mice establishes their utility for mechanistic studies of arterial vasculopathy, related complications, and therapeutic interventions for large artery damage due to SCA.


Assuntos
Anemia Falciforme/tratamento farmacológico , Antracenos/farmacologia , Artérias Carótidas/efeitos dos fármacos , Doenças das Artérias Carótidas/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Remodelação Vascular/efeitos dos fármacos , Anemia Falciforme/enzimologia , Anemia Falciforme/genética , Anemia Falciforme/fisiopatologia , Animais , Artérias Carótidas/enzimologia , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/enzimologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/fisiopatologia , Catepsina K/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Elastina/metabolismo , Hemoglobinas/genética , Homozigoto , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Transgênicos , Mutação , Proteólise , Transdução de Sinais , Fatores de Tempo
3.
Exp Biol Med (Maywood) ; 241(7): 755-65, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26946534

RESUMO

Children with sickle cell anemia (SCA) have a high incidence of strokes, and transcranial Doppler (TCD) identifies at-risk patients by measuring blood velocities in large intracerebral arteries; time-averaged mean velocities greater than 200 cm/s confer high stroke risk and warrant therapeutic intervention with blood transfusions. Our objective was to use computational fluid dynamics to alter fluid and artery wall properties, to simulate scenarios causative of significantly elevated arterial blood velocities. Two-dimensional simulations were created and increasing percent stenoses were created in silico, with their locations varied among middle cerebral artery (MCA), internal carotid artery (ICA), and anterior cerebral artery (ACA). Stenoses placed in the MCA, ICA, or ACA generated local increases in velocity, but not sufficient to reach magnitudes > 200 cm/s, even up to 75% stenosis. Three-dimensional reconstructions of the MCA, ICA, and ACA from children with SCA were generated from magnetic resonance angiograms. Using finite element method, blood flow was simulated with realistic velocity waveforms to the ICA inlet. Three-dimensional reconstructions revealed an uneven, internal arterial wall surface in children with SCA and higher mean velocities in the MCA up to 145 cm/s compared to non-SCA reconstructions. There were also greater areas of flow recirculation and larger regions of low wall shear stress. Taken together, these bumps on the internal wall of the cerebral arteries could create local flow disturbances that, in aggregate, could elevate blood velocities in SCA. Identifying cellular causes of these microstructures as adhered blood cells or luminal narrowing due to endothelial hyperplasia induced by disturbed flow would provide new targets to treat children with SCA. The preliminary qualitative results provided here point out the critical role of 3D reconstruction of patient-specific vascular geometries and provide qualitative insight to complex interplay between vascular geometry and rheological properties possibly altered by SCA.


Assuntos
Anemia Falciforme/complicações , Artéria Cerebral Média/fisiopatologia , Acidente Vascular Cerebral/etiologia , Anemia Falciforme/fisiopatologia , Velocidade do Fluxo Sanguíneo , Criança , Hemodinâmica , Humanos , Angiografia por Ressonância Magnética , Artéria Cerebral Média/diagnóstico por imagem , Reologia , Fatores de Risco
4.
Acta Biomater ; 8(12): 4268-77, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22890285

RESUMO

Biodegradable thermoplastic elastomers are attractive for application in cardiovascular tissue construct development due to their amenability to a wide range of physical property tuning. For heart valve leaflets, while low flexural stiffness is a key design feature, control of this parameter has been largely neglected in the scaffold literature where electrospinning is being utilized. This study evaluated the effect of processing variables and secondary fiber populations on the microstructure, tensile and bending mechanics of electrospun biodegradable polyurethane scaffolds for heart valve tissue engineering. Scaffolds were fabricated from poly(ester urethane) urea (PEUU) and the deposition mandrel was translated at varying rates in order to modify fiber intersection density. Scaffolds were also fabricated in conjunction with secondary fiber populations designed either for mechanical reinforcement or to be selectively removed following fabrication. It was determined that increasing fiber intersection densities within PEUU scaffolds was associated with lower bending moduli. Further, constructs fabricated with stiff secondary fiber populations had higher bending moduli whereas constructs with secondary fiber populations which were selectively removed had noticeably lower bending moduli. Insights gained from this work will be directly applicable to the fabrication of soft tissue constructs, specifically in the development of cardiac valve tissue constructs.


Assuntos
Próteses Valvulares Cardíacas , Teste de Materiais , Poliésteres/química , Engenharia Tecidual , Alicerces Teciduais/química , Elasticidade , Humanos
5.
Acta Biomater ; 7(12): 4139-48, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21839864

RESUMO

The structures and mechanical properties of both physically and covalently cross-linked nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and silicate nanoparticles (Laponite RD) are investigated. Injectable nanocomposite precursor solutions can be covalently cross-linked via photopolymerization. The resulting hydrogels are transparent and have interconnected pores, high elongation and toughness. These properties depend on the hydrogel composition, polymer-nanoparticle interactions and degree of cross-linking (both physical and covalent). Covalent cross-linking of polymer chains leads to the formation of an elastic network, whereas physical cross-linking between nanoparticles and polymer chains induces viscoelastic properties. At high deformations covalent bonds may be broken but physical bonds rebuild and to some extent self-heal the overall network structure. Addition of silicate also enhances the bioactivity and adhesiveness of the hydrogel as these materials stick to soft tissue as well as to hard surfaces. In addition, MC3T3-E1 mouse preosteoblast cells readily adhere and spread on nanocomposite hydrogel surfaces. Collectively, the combinations of properties such as elasticity, stiffness, interconnected network, adhesiveness to surfaces and bio-adhesion to cells provide inspiration and opportunities to engineer mechanically strong and elastic tissue matrixes for orthopedic, craniofacial and dental applications.


Assuntos
Hidrogéis , Nanopartículas , Polietilenoglicóis/química , Silicatos/química , Animais , Camundongos , Células Swiss 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...