Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Phys Chem Au ; 3(1): 63-73, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36718260

RESUMO

Tryptophan is one of few residues that participates in biological electron transfer reactions. Upon substitution of the native Cu2+ center with Zn2+ in the blue-copper protein azurin, a long-lived tryptophan neutral radical can be photogenerated. We report the following quantum yield values for Zn-substituted azurin in the presence of the electron acceptor Cu(II)-azurin: formation of the tryptophan neutral radical (Φrad), electron transfer (ΦET), fluorescence (Φfluo), and phosphorescence (Φphos), as well as the efficiency of proton transfer of the cation radical (ΦPT). Increasing the concentration of the electron acceptor increased Φrad and ΦET values and decreased Φphos without affecting Φfluo. At all concentrations of the acceptor, the value of ΦPT was nearly unity. These observations indicate that the phosphorescent triplet state is the parent state of electron transfer and that nearly all electron transfer events lead to proton loss. Similar results regarding the parent state were obtained with a different electron acceptor, [Co(NH3)5Cl]2+; however, Stern-Volmer graphs revealed that [Co(NH3)5Cl]2+ was a more effective phosphorescence quencher (K SV = 230 000 M-1) compared to Cu(II)-azurin (K SV = 88 000 M-1). Competition experiments in the presence of both [Co(NH3)5Cl]2+ and Cu(II)-azurin suggested that [Co(NH3)5Cl]2+ is the preferred electron acceptor. Implications of these results in terms of quenching mechanisms are discussed.

2.
J Phys Chem B ; 126(36): 6751-6761, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977067

RESUMO

The protein, azurin, has enabled the study of the tryptophan radical. Upon UV excitation of tyrosine-deficient apoazurin and in the presence of a Co(III) electron acceptor, the neutral radical (W48•) is formed. The lifetime of W48• in apoazurin is 41 s, which is shorter than the lifetime of several hours in Zn-substituted azurin. Molecular dynamics simulations revealed enhanced fluctuations of apoazurin which likely destabilize W48•. The photophysics of W48 was investigated to probe the precursor state for ET. The phosphorescence intensity was eliminated in the presence of an electron acceptor while the fluorescence was unchanged; this quenching of the phosphorescence is attributed to ET. The kinetics associated with W48• were examined with a model that incorporates intersystem crossing, ET, deprotonation, and decay of the cation radical. The estimated rate constants for ET (6 × 106 s-1) and deprotonation (3 × 105 s-1) are in agreement with a photoinduced mechanism where W48• is derived from the triplet state. The triplet as the precursor state for ET was supported by photolysis of apoazurin with 280 nm in the absence and presence of triplet-absorbing 405 nm light. Absorption bands from the neutral radical were observed only in the presence of blue light.


Assuntos
Azurina , Apoproteínas/genética , Azurina/genética , Cinética , Triptofano
3.
J Phys Chem B ; 123(30): 6430-6443, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313925

RESUMO

Isotopologues are valuable vibrational probes that shift features in a vibrational spectrum while preserving the electronic structure of the molecule. We report the vibrational and electronic spectra of perdeuterated tryptophan in solution (l-Trp-d5), as Trp48-d5 in azurin, and as the photogenerated neutral tryptophan radical, Trp48-d5•, in azurin. The UV resonance Raman bands of the perdeuterated closed-shell tryptophan in solution and in azurin are lower in frequency relative to the protiated counterpart. The observed decrease in frequencies of l-Trp-d5 bands relative to l-Trp-h5 enables the analysis of vibrational markers of other amino acids, e.g., phenylalanine, that overlap with some modes of l-Trp-h5. The Raman intensities vary between l-Trp-d5 and l-Trp-h5; these differences likely reflect modifications in normal mode composition upon perdeuteration. Analysis of the W3, W6, and W17 modes suggests that the W3 mode retains its utility as a conformational marker; however, the H-bond markers W6 and W17 appear to be less sensitive upon perdeuteration. The neutral tryptophan radical, Trp48-d5•, was generated in azurin with a slightly lower radical quantum yield than for Trp48-h5•. The visible resonance Raman spectrum of Trp48-d5• is different from that of Trp48-h5•, especially in terms of relative intensities, and all assignable peaks decreased in frequency upon perdeuteration. The absorption and emission spectra of the perdeuterated closed-shell and radical species exhibited hypsochromic shifts of less than 1 nm relative to the protiated species. The data presented here indicate that l-Trp-d5 is a valuable probe of vibrational structure, with minimal modification of photoreactivity and photophysics compared to l-Trp-h5.


Assuntos
Azurina/química , Análise Espectral Raman/métodos , Triptofano/química , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...