Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(1): 111917, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640344

RESUMO

The synapsis of DNA ends is a critical step for the repair of double-strand breaks by non-homologous end joining (NHEJ). This is performed by a multicomponent protein complex assembled around Ku70-Ku80 heterodimers and regulated by accessory factors, including long non-coding RNAs, through poorly understood mechanisms. Here, we use magnetic tweezers to investigate the contributions of core NHEJ proteins and APLF and lncRNA NIHCOLE to DNA synapsis. APLF stabilizes DNA end bridging and, together with Ku70-Ku80, establishes a minimal complex that supports DNA synapsis for several minutes under piconewton forces. We find the C-terminal acidic region of APLF to be critical for bridging. NIHCOLE increases the dwell time of the synapses by Ku70-Ku80 and APLF. This effect is further enhanced by a small and structured RNA domain within NIHCOLE. We propose a model where Ku70-Ku80 can simultaneously bind DNA, APLF, and structured RNAs to promote the stable joining of DNA ends.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Reparo do DNA por Junção de Extremidades , DNA/metabolismo , Reparo do DNA
2.
Nat Commun ; 13(1): 7062, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400800

RESUMO

Detection of cytosolic DNA is a central element of the innate immunity system against viral infection. The Ku heterodimer, a component of the NHEJ pathway of DNA repair in the nucleus, functions as DNA sensor that detects dsDNA of viruses that replicate in the cytoplasm. Vaccinia virus expresses two proteins, C4 and C16, that inactivate DNA sensing and enhance virulence. The structural basis for this is unknown. Here we determine the structure of the C16 - Ku complex using cryoEM. Ku binds dsDNA by a preformed ring but C16 sterically blocks this access route, abrogating binding to a dsDNA end and its insertion into DNA-PK, thereby averting signalling into the downstream innate immunity system. C4 replicates these activities using a domain with 54% identity to C16. Our results reveal how vaccinia virus subverts the capacity of Ku to recognize viral DNA.


Assuntos
Proteínas de Ligação a DNA , Vaccinia virus , Vaccinia virus/genética , Proteínas de Ligação a DNA/metabolismo , Autoantígeno Ku/metabolismo , DNA/metabolismo , Proteína Quinase Ativada por DNA/metabolismo
3.
Cancer Res ; 81(19): 4910-4925, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34321241

RESUMO

Long noncoding RNAs (lncRNA) are emerging as key players in cancer as parts of poorly understood molecular mechanisms. Here, we investigated lncRNAs that play a role in hepatocellular carcinoma (HCC) and identified NIHCOLE, a novel lncRNA induced in HCC with oncogenic potential and a role in the ligation efficiency of DNA double-stranded breaks (DSB). NIHCOLE expression was associated with poor prognosis and survival of HCC patients. Depletion of NIHCOLE from HCC cells led to impaired proliferation and increased apoptosis. NIHCOLE deficiency led to accumulation of DNA damage due to a specific decrease in the activity of the nonhomologous end-joining (NHEJ) pathway of DSB repair. DNA damage induction in NIHCOLE-depleted cells further decreased HCC cell growth. NIHCOLE was associated with DSB markers and recruited several molecules of the Ku70/Ku80 heterodimer. Further, NIHCOLE putative structural domains supported stable multimeric complexes formed by several NHEJ factors including Ku70/80, APLF, XRCC4, and DNA ligase IV. NHEJ reconstitution assays showed that NIHCOLE promoted the ligation efficiency of blunt-ended DSBs. Collectively, these data show that NIHCOLE serves as a scaffold and facilitator of NHEJ machinery and confers an advantage to HCC cells, which could be exploited as a targetable vulnerability. SIGNIFICANCE: This study characterizes the role of lncRNA NIHCOLE in DNA repair and cellular fitness in HCC, thus implicating it as a therapeutic target.See related commentary by Barcena-Varela and Lujambio, p. 4899.


Assuntos
Carcinoma Hepatocelular/genética , Quebras de DNA de Cadeia Dupla , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral , Reparo do DNA por Junção de Extremidades , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Modelos Biológicos , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Prognóstico , RNA Longo não Codificante/química
4.
Nat Rev Microbiol ; 19(9): 567-584, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34040228

RESUMO

Type VII secretion systems (T7SSs) have a key role in the secretion of effector proteins in non-pathogenic mycobacteria and pathogenic mycobacteria such as Mycobacterium tuberculosis, the main causative agent of tuberculosis. Tuberculosis-causing mycobacteria, still accounting for 1.4 million deaths annually, rely on paralogous T7SSs to survive in the host and efficiently evade its immune response. Although it is still unknown how effector proteins of T7SSs cross the outer membrane of the diderm mycobacterial cell envelope, recent advances in the structural characterization of these secretion systems have revealed the intricate network of interactions of conserved components in the plasma membrane. This structural information, added to recent advances in the molecular biology and regulation of mycobacterial T7SSs as well as progress in our understanding of their secreted effector proteins, is shedding light on the inner working of the T7SS machinery. In this Review, we highlight the implications of these studies and the derived transport models, which provide new scenarios for targeting the deathly human pathogen M. tuberculosis.


Assuntos
Mycobacterium/metabolismo , Sistemas de Secreção Tipo VII/fisiologia , Transporte Biológico , Membrana Celular , Conformação Proteica
5.
Nature ; 576(7786): 321-325, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597161

RESUMO

Host infection by pathogenic mycobacteria, such as Mycobacterium tuberculosis, is facilitated by virulence factors that are secreted by type VII secretion systems1. A molecular understanding of the type VII secretion mechanism has been hampered owing to a lack of three-dimensional structures of the fully assembled secretion apparatus. Here we report the cryo-electron microscopy structure of a membrane-embedded core complex of the ESX-3/type VII secretion system from Mycobacterium smegmatis. The core of the ESX-3 secretion machine consists of four protein components-EccB3, EccC3, EccD3 and EccE3, in a 1:1:2:1 stoichiometry-which form two identical protomers. The EccC3 coupling protein comprises a flexible array of four ATPase domains, which are linked to the membrane through a stalk domain. The domain of unknown function (DUF) adjacent to the stalk is identified as an ATPase domain that is essential for secretion. EccB3 is predominantly periplasmatic, but a small segment crosses the membrane and contacts the stalk domain. This suggests that conformational changes in the stalk domain-triggered by substrate binding at the distal end of EccC3 and subsequent ATP hydrolysis in the DUF-could be coupled to substrate secretion to the periplasm. Our results reveal that the architecture of type VII secretion systems differs markedly from that of other known secretion machines2, and provide a structural understanding of these systems that will be useful for the design of antimicrobial strategies that target bacterial virulence.


Assuntos
Microscopia Crioeletrônica , Mycobacterium smegmatis/química , Sistemas de Secreção Tipo VII/química , Sistemas de Secreção Tipo VII/ultraestrutura , Actinobacteria/química , Actinobacteria/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/ultraestrutura , Domínios Proteicos , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Relação Estrutura-Atividade , Thermomonospora , Sistemas de Secreção Tipo VII/isolamento & purificação
7.
Structure ; 25(7): 1145-1152.e4, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28648606

RESUMO

The R2TP complex, comprising the Rvb1p-Rvb2p AAA-ATPases, Tah1p, and Pih1p in yeast, is a specialized Hsp90 co-chaperone required for the assembly and maturation of multi-subunit complexes. These include the small nucleolar ribonucleoproteins, RNA polymerase II, and complexes containing phosphatidylinositol-3-kinase-like kinases. The structure and stoichiometry of yeast R2TP and how it couples to Hsp90 are currently unknown. Here, we determine the 3D organization of yeast R2TP using sedimentation velocity analysis and cryo-electron microscopy. The 359-kDa complex comprises one Rvb1p/Rvb2p hetero-hexamer with domains II (DIIs) forming an open basket that accommodates a single copy of Tah1p-Pih1p. Tah1p-Pih1p binding to multiple DII domains regulates Rvb1p/Rvb2p ATPase activity. Using domain dissection and cross-linking mass spectrometry, we identified a unique region of Pih1p that is essential for interaction with Rvb1p/Rvb2p. These data provide a structural basis for understanding how R2TP couples an Hsp90 dimer to a diverse set of client proteins and complexes.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Choque Térmico HSP90/química , Chaperonas Moleculares/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
8.
Nature ; 508(7497): 550-553, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24670658

RESUMO

Bacterial type IV secretion systems translocate virulence factors into eukaryotic cells, distribute genetic material between bacteria and have shown potential as a tool for the genetic modification of human cells. Given the complex choreography of the substrate through the secretion apparatus, the molecular mechanism of the type IV secretion system has proved difficult to dissect in the absence of structural data for the entire machinery. Here we use electron microscopy to reconstruct the type IV secretion system encoded by the Escherichia coli R388 conjugative plasmid. We show that eight proteins assemble in an intricate stoichiometric relationship to form an approximately 3 megadalton nanomachine that spans the entire cell envelope. The structure comprises an outer membrane-associated core complex connected by a central stalk to a substantial inner membrane complex that is dominated by a battery of 12 VirB4 ATPase subunits organized as side-by-side hexameric barrels. Our results show a secretion system with markedly different architecture, and consequently mechanism, to other known bacterial secretion systems.


Assuntos
Sistemas de Secreção Bacterianos , Escherichia coli/química , Escherichia coli/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Sistemas de Secreção Bacterianos/genética , Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura
9.
EMBO J ; 32(8): 1195-204, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23511972

RESUMO

Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1-11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane-spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O-layer inserted in the outer membrane and the I-layer inserted in the inner membrane. While the structure of the O-layer has been solved by X-ray crystallography, there is no detailed structural information on the I-layer. Using high-resolution cryo-electron microscopy and molecular modelling combined with biochemical approaches, we determined the I-layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived.


Assuntos
Agrobacterium tumefaciens/química , Sistemas de Secreção Bacterianos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica
10.
Nucleic Acids Res ; 39(13): 5757-67, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21450809

RESUMO

The multi-subunit DNA-dependent protein kinase (DNA-PK), a crucial player in DNA repair by non-homologous end-joining in higher eukaryotes, consists of a catalytic subunit (DNA-PKcs) and the Ku heterodimer. Ku recruits DNA-PKcs to double-strand breaks, where DNA-PK assembles prior to DNA repair. The interaction of DNA-PK with DNA is regulated via autophosphorylation. Recent SAXS data addressed the conformational changes occurring in the purified catalytic subunit upon autophosphorylation. Here, we present the first structural analysis of the effects of autophosphorylation on the trimeric DNA-PK enzyme, performed by electron microscopy and single particle analysis. We observe a considerable degree of heterogeneity in the autophosphorylated material, which we resolved into subpopulations of intact complex, and separate DNA-PKcs and Ku, by using multivariate statistical analysis and multi-reference alignment on a partitioned particle image data set. The proportion of dimeric oligomers was reduced compared to non-phosphorylated complex, and those dimers remaining showed a substantial variation in mutual monomer orientation. Together, our data indicate a substantial remodelling of DNA-PK holo-enzyme upon autophosphorylation, which is crucial to the release of protein factors from a repaired DNA double-strand break.


Assuntos
Proteína Quinase Ativada por DNA/ultraestrutura , DNA/metabolismo , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Dimerização , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica/métodos , Fosforilação
11.
Cell Microbiol ; 12(9): 1203-12, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20642798

RESUMO

Type IV secretion systems (T4SSs) are large protein complexes which traverse the cell envelope of many bacteria. They contain a channel through which proteins or protein-DNA complexes can be translocated. This translocation is driven by a number of cytoplasmic ATPases which might energize large conformational changes in the translocation complex. The family of T4SSs is very versatile, shown by the great variety of functions among family members. Some T4SSs are used by pathogenic Gram-negative bacteria to translocate a wide variety of virulence factors into the host cell. Other T4SSs are utilized to mediate horizontal gene transfer, an event that greatly facilitates the adaptation to environmental changes and is the basis for the spread of antibiotic resistance among bacteria. Here we review the recent advances in the characterization of the architecture and mechanism of substrate transfer in a few representative T4SSs with a particular focus on their diversity of structure and function.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Conjugação Genética , DNA Bacteriano/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/patogenicidade , Humanos , Fatores de Virulência/genética
12.
DNA Repair (Amst) ; 8(12): 1380-9, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19837014

RESUMO

The DNA ligase IV-Xrcc4 complex is responsible for the ligation of broken DNA ends in the non-homologous end-joining (NHEJ) pathway of DNA double strand break repair in mammals. Mutations in DNA ligase IV (Lig4) lead to immunodeficiency and radiosensitivity in humans. Only partial structural information for Lig4 and Xrcc4 is available, while the structure of the full-length proteins and their arrangement within the Lig4-Xrcc4 complex is unknown. The C-terminal domain of Xrcc4, whose structure has not been solved, contains phosphorylation sites for DNA-PKcs and is phylogenetically conserved, indicative of a regulatory role in NHEJ. Here, we have purified full length Xrcc4 and the Lig4-Xrcc4 complex, and analysed their structure by single-particle electron microscopy. The three-dimensional structure of Xrcc4 at a resolution of approximately 37A reveals that the C-terminus of Xrcc4 forms a dimeric globular domain connected to the N-terminus by a coiled-coil. The N- and C-terminal domains of Xrcc4 locate at opposite ends of an elongated molecule. The electron microscopy images of the Lig4-Xrcc4 complex were examined by two-dimensional image processing and a double-labelling strategy, identifying the site of the C-terminus of Xrcc4 and the catalytic core of Lig4 within the complex. The catalytic domains of Lig4 were found to be in the vicinity of the N-terminus of Xrcc4. We provide a first sight of the structural organization of the Lig4-Xrcc4 complex, which suggests that the BRCT domains could provide the link of the ligase to Xrcc4 while permitting some movements of the catalytic domains of Lig4. This arrangement may facilitate the ligation of diverse configurations of damaged DNA.


Assuntos
DNA Ligases/metabolismo , DNA Ligases/ultraestrutura , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , DNA/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
13.
Dev Biol ; 321(2): 331-42, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18638468

RESUMO

We have isolated a Dictyostelium mutant unable to induce expression of the prestalk-specific marker ecmB in monolayer assays. The disrupted gene, padA, leads to a range of phenotypic defects in growth and development. We show that padA is essential for growth, and we have generated a thermosensitive mutant allele, padA(-). At the permissive temperature, mutant cells grow poorly; they remain longer at the slug stage during development and are defective in terminal differentiation. At the restrictive temperature, growth is completely blocked, while development is permanently arrested prior to culmination. padA(-) slugs are deficient in prestalk A cell differentiation and present an abnormal ecmB expression pattern. Sequence comparisons and predicted three-dimensional structure analyses show that PadA carries an NmrA-like domain. NmrA is a negative transcriptional regulator involved in nitrogen metabolite repression in Aspergillus nidulans. PadA predicted structure shows a NAD(P)(+)-binding domain, which we demonstrate that is essential for function. We show that padA(-) development is more sensitive to ammonia than wild-type cells and two ammonium transporters, amtA and amtC, appear derepressed during padA(-) development. Our data suggest that PadA belongs to a new family of NAD(P)(+)-binding proteins that link metabolic changes to gene expression and is required for growth and normal development.


Assuntos
Diferenciação Celular/fisiologia , Dictyostelium/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Protozoários/metabolismo , Animais , Biologia Computacional , Primers do DNA/genética , Proteínas Fúngicas/genética , Hibridização In Situ , Mutagênese , Estrutura Terciária de Proteína/genética , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temperatura , Fatores de Transcrição/genética
14.
EMBO Rep ; 8(1): 56-62, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17159921

RESUMO

Recognition of DNA double-strand breaks during non-homologous end joining is carried out by the Ku70-Ku80 protein, a 150 kDa heterodimer that recruits the DNA repair kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to the lesion. The atomic structure of a truncated Ku70-Ku80 was determined; however, the subunit-specific carboxy-terminal domain of Ku80--essential for binding to DNA-PKcs--was determined only in isolation, and the C-terminal domain of Ku70 was not resolved in its DNA-bound conformation. Both regions are conserved and mediate protein-protein interactions specific to mammals. Here, we reconstruct the three-dimensional structure of the human full-length Ku70-Ku80 dimer at 25 A resolution, alone and in complex with DNA, by using single-particle electron microscopy. We map the C-terminal regions of both subunits, and their conformational changes after DNA and DNA-PKcs binding to define a molecular model of the functions of these domains during DNA repair in the context of full-length Ku70-Ku80 protein.


Assuntos
Antígenos Nucleares/química , Antígenos Nucleares/ultraestrutura , Proteína Quinase Ativada por DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , DNA/química , Dimerização , Humanos , Autoantígeno Ku , Microscopia Eletrônica , Conformação Proteica , Mapeamento de Interação de Proteínas
15.
Mol Cell ; 22(4): 511-9, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16713581

RESUMO

DNA-PKcs is a large (approximately 470 kDa) kinase that plays an essential role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). DNA-PKcs is recruited to DSBs by the Ku70/Ku80 heterodimer, with which it forms the core of a multiprotein complex that promotes synapsis of the broken DNA ends. We have purified the human DNA-PKcs/Ku70/Ku80 holoenzyme assembled on a DNA molecule. Its three-dimensional (3D) structure at approximately 25 Angstroms resolution was determined by single-particle electron microscopy. Binding of Ku and DNA elicits conformational changes in the FAT and FATC domains of DNA-PKcs. Dimeric particles are observed in which two DNA-PKcs/Ku70/Ku80 holoenzymes interact through the N-terminal HEAT repeats. The proximity of the dimer contacts to the likely positions of the DNA ends suggests that these represent synaptic complexes that maintain broken DNA ends in proximity and provide a platform for access of the various enzymes required for end processing and ligation.


Assuntos
Antígenos Nucleares/química , Reparo do DNA/fisiologia , Proteína Quinase Ativada por DNA/química , Proteínas de Ligação a DNA/química , DNA/química , Proteínas Nucleares/química , Antígenos Nucleares/metabolismo , Sequência de Bases , DNA/genética , DNA/metabolismo , Dano ao DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Autoantígeno Ku , Substâncias Macromoleculares , Microscopia Eletrônica , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformação Proteica
16.
J Biol Chem ; 281(13): 8780-7, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16452473

RESUMO

The mannose receptor family comprises four members in mammals, Endo180 (CD280), DEC-205 (CD205), phospholipase A(2) receptor (PLA(2)R) and the mannose receptor (MR, CD206), whose extracellular portion contains a similar domain arrangement: an N-terminal cysteine-rich domain (CysR) followed by a single fibronectin type II domain (FNII) and 8-10 C-type lectin-like domains (CTLDs). These proteins mediate diverse functions ranging from extracellular matrix turnover through collagen uptake to homeostasis and immunity based on sugar recognition. Endo180 and the MR are multivalent transmembrane receptors capable of interacting with multiple ligands; in both receptors FNII recognizes collagens, and a single CTLD retains lectin activity (CTLD2 in Endo180 and CTLD4 in MR). It is expected that the overall conformation of these multivalent molecules would deeply influence their function as the availability of their binding sites could be altered under different conditions. However, conflicting reports have been published on the three-dimensional arrangement of these receptors. Here, we have used single particle electron microscopy to elucidate the three-dimensional organization of the MR and Endo180. Strikingly, we have found that both receptors display distinct three-dimensional structures, which are, however, conceptually very similar: a bent and compact conformation built upon interactions of the CysR domain and the lone functional CTLD. Biochemical and electron microscopy experiments indicate that, under a low pH mimicking the endosomal environment, both MR and Endo180 experience large conformational changes. We propose a structural model for the mannose receptor family where at least two conformations exist that may serve to regulate differences in ligand selectivity.


Assuntos
Lectinas Tipo C/química , Lectinas Tipo C/ultraestrutura , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/ultraestrutura , Microscopia Eletrônica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/ultraestrutura , Receptores Mitogênicos/química , Receptores Mitogênicos/ultraestrutura , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Receptor de Manose , Modelos Estruturais , Conformação Proteica , Estrutura Terciária de Proteína
17.
Structure ; 13(2): 243-55, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15698568

RESUMO

DNA-PKcs is a large PI3-kinase-related protein kinase (PIKK) that plays a central role in DNA double-strand break (DSB) repair via nonhomologous end joining. Using cryo-electron microscopy we have now generated an approximately 13 A three-dimensional map of DNA-PKcs, revealing the overall architecture and topology of the 4128 residue polypeptide chain and allowing location of domains. The highly conserved C-terminal PIKK catalytic domain forms a central structure from which FAT and FATC domains protrude. Conformational changes observed in these domains on DNA binding suggest that they transduce DNA-induced conformational changes to the catalytic core and regulate kinase activity. The N-terminal segments form long curved tubular-shaped domains based on helical repeats to create interacting surfaces required for macromolecular assembly. Comparison of DNA-PKcs with another PIKK DNA repair factor, ATM, defines a common architecture for this important protein family.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Serina-Treonina Quinases/química , Proteínas Mutadas de Ataxia Telangiectasia , Domínio Catalítico , Proteínas de Ciclo Celular/química , Microscopia Crioeletrônica , DNA/metabolismo , Proteína Quinase Ativada por DNA , Ativação Enzimática , Humanos , Conformação Molecular , Proteínas Nucleares , Fosfatidilinositol 3-Quinases/química , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/química
18.
EMBO J ; 22(21): 5875-82, 2003 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-14592984

RESUMO

The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) is essential for the repair of double-stranded DNA breaks (DSBs) in non- homologous end joining (NHEJ) and during V(D)J recombination. DNA-PKcs binds single- and double-stranded DNA in vitro, and in vivo the Ku heterodimer probably helps recruit it to DSBs with high affinity. Once loaded onto DNA, DNA-PKcs acts as a scaffold for other repair factors to generate a multiprotein complex that brings the two DNA ends together. Human DNA-PKcs has been analysed by electron microscopy in the absence and presence of double-stranded DNA, and the three-dimensional reconstruction of DNA-bound DNA-PKcs displays large conformational changes when compared with the unbound protein. DNA-PKcs seems to use a palm-like domain to clip onto the DNA, and this new conformation correlates with the activation of the kinase. We suggest that the observed domain movements might help the binding and maintenance of DNA-PKcs' interaction with DNA at the sites of damage, and that these conformational changes activate the kinase.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA , DNA/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Proteínas de Ciclo Celular , DNA/genética , Dano ao DNA , Proteína Quinase Ativada por DNA , Ativação Enzimática , Células HeLa , Humanos , Técnicas In Vitro , Microscopia Eletrônica , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares , Conformação Proteica , Proteínas Serina-Treonina Quinases/ultraestrutura , Subunidades Proteicas , Proteínas Supressoras de Tumor
19.
EMBO Rep ; 4(8): 807-12, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12856000

RESUMO

Endo180, also known as the urokinase plasminogen activator receptor (uPAR)-associated protein (uPARAP), is one of the four members of the mannose receptor family, and is implicated in extracellular-matrix remodelling through its interactions with collagens, sugars and uPAR. The extracellular portion of Endo180 contains an amino-terminal cysteine-rich domain, a single fibronectin type II domain and eight C-type lectin-like domains. We have purified a soluble version of Endo180 and analysed it by single-particle electron microscopy to obtain a three-dimensional structure of the N-terminal part of the protein at a resolution of 17 A and reveal, for the first time, the interactions between non-adjacent domains in the mannose receptor family. We show that for Endo180, the cysteine-rich domain contacts the second C-type lectin-like domain, thus providing structural insight into how modulation of its several ligand interactions may regulate Endo180 receptor function.


Assuntos
Glicoproteínas de Membrana/química , Receptores Mitogênicos/química , Animais , Células COS , Cristalografia por Raios X , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Lectinas Tipo C/química , Ligantes , Receptor de Manose , Lectinas de Ligação a Manose/química , Glicoproteínas de Membrana/isolamento & purificação , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores Mitogênicos/isolamento & purificação , Receptores Mitogênicos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...