Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 15(17): 3573-3579, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30957119

RESUMO

Using a ray tracing calculation, the energy landscape of dumbbells, made of spherical colloidal particles, interacting with a periodic distribution of light is calculated. As shown previously [E. Sarmiento-Gomez, J. A. Rivera-Moran and J. L. Aruaz-Lara, Soft Matter, 2018, 14, 3684], planar aggregates of spherical particles adopt discrete configurations in such light distribution. Here we focus on the case of colloidal dumbbells both symmetric and asymmetric from an experimental and theoretical point of view. It has been shown that the direct calculation using the ray tracing approximation is in excellent agreement with the experiment in spite of the fact that the particles size and the wavelength of the trapping light are comparable. We also corroborate, at least for the more simple case of a single particle in a parabolic light distribution, that the simple method used here provides the same results as the more complex and general Lorenz-Mie approach giving a more simple yet reliable method for the calculation of the energy landscape of colloidal aggregates in periodic light distributions.

2.
Soft Matter ; 14(19): 3684-3688, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29718050

RESUMO

Colloidal particles when subjected to a periodic array of potential wells are observed to adopt discrete stable configurations depending on the particle size/array wavelength ratio. Experimentally, the configuration states are determined for singlets, doublets and triplets of identical spheres in a periodic array of traps. The energy landscape of a single spherical particle is obtained by considering the refraction of the incident light as it passes throughout the particle. Then, the energy of a dumbbell is determined as the superposition of two singlets. The energy of a triplet is calculated as the superposition of a dumbbell and a single particle. As it is shown here, this direct method predicts accurately the stable particle configurations as observed in the experiments. The method can be generalized to obtain the potential energy of an n-particle aggregate, using as building blocks the energies of singlets and doublets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...