Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(2): e35379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348505

RESUMO

This study emphasizes the development of a multifunctional biomaterial ink for wound healing constructs. The biomaterial ink benefits from Aloe vera's intrinsic biocompatible, biodegradable, antioxidant, antimicrobial, anti-inflammatory, and immunomodulatory attributes, thus alleviating the need for supplementary substances employed to combat infections and stimulate tissue regeneration. Moreover, this biomaterial ink seeks to address the scarcity of standardized printable materials possessing adequate biocompatibility and physicochemical properties, which hinder its widespread clinical adoption. The biomaterial ink was synthesized via ionic crosslinking to enhance its rheological and mechanical characteristics. The findings revealed that Aloe vera substantially boosted the hydrogel's viscoelastic behavior, enabling superior compressive modulus and the extrusion of fine filaments. The bioprinted constructs exhibited desirable resolution and mechanical strength while displaying a porous microstructure analogous to the native extracellular matrix. Biological response demonstrated no detrimental impact on stem cell viability upon exposure to the biomaterial ink, as confirmed by live/dead assays. These outcomes validate the potential of the developed biomaterial ink as a resource for the bioprinting of wound dressings that effectively foster cellular proliferation, thereby promoting enhanced wound healing by leveraging Aloe vera's inherent properties.


Assuntos
Aloe , Bioimpressão , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Aloe/química , Tinta , Bandagens , Impressão Tridimensional , Hidrogéis/farmacologia , Hidrogéis/química , Engenharia Tecidual , Alicerces Teciduais/química
2.
Microb Biotechnol ; 17(1): e14360, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041693

RESUMO

Three dimensional printing has emerged as a widely acceptable strategy for the fabrication of mammalian cell laden constructs with complex microenvironments for tissue engineering and regenerative medicine. More recently 3D printed living materials containing microorganisms have been developed and matured into living biofilms. The potential for engineered 3D biofilms as in vitro models for biomedical applications, such as antimicrobial susceptibility testing, and environmental applications, such as bioleaching, bioremediation, and wastewater purification, is extensive but the need for an in-depth understanding of the structure-function relationship between the complex construct and the microorganism response still exists. This review discusses 3D printing fabrication methods for engineered biofilms with specific structural features. Next, it highlights the importance of bioink compositions and 3D bioarchitecture design. Finally, a brief overview of current and potential applications of 3D printed biofilms in environmental and biomedical fields is discussed.


Assuntos
Bioimpressão , Animais , Bioimpressão/métodos , Engenharia Tecidual , Impressão Tridimensional , Biofilmes , Biodegradação Ambiental , Mamíferos
3.
Cells ; 10(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944076

RESUMO

Hydrogels are commonly used for the 3D culture of musculoskeletal cells. Sulfated hydrogels, which have seen a growing interest over the past years, provide a microenvironment that help maintain the phenotype of chondrocytes and chondrocyte-like cells and can be used for sustained delivery of growth factors and other drugs. Sulfated hydrogels are hence valuable tools to improve cartilage and intervertebral disc tissue engineering. To further advance the utilization of these hydrogels, we identify and summarize the current knowledge about different sulfated hydrogels, highlight their beneficial effects in cartilage and disc research, and review the biofabrication processes most suitable to secure best quality assurance through deposition fidelity, repeatability, and attainment of biocompatible morphologies.


Assuntos
Cartilagem/efeitos dos fármacos , Hidrogéis/farmacologia , Disco Intervertebral/efeitos dos fármacos , Pesquisa , Sulfatos/farmacologia , Animais , Humanos , Hidrogéis/química , Sulfatos/química , Engenharia Tecidual
4.
ACS Sens ; 6(10): 3706-3714, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34582189

RESUMO

Sutures are ubiquitous medical devices for wound closures in human and veterinary medicine, and suture techniques are frequently evaluated by comparing tensile strengths in ex vivo studies. Direct and nondestructive measurement of tensile force present in sutured biological skin tissue is a key challenge in biomechanical fields because of the unique and complex properties of each sutured skin specimen and the lack of compliant sensors capable of monitoring large levels of strain. The authors have recently proposed a soft elastomeric capacitor (SEC) sensor that consists of a highly compliant and scalable strain gauge capable of transducing geometric variations into a measurable change in capacitance. In this study, corrugated SECs are used to experimentally characterize the inherent biomechanical properties of canine skin specimens. In particular, an SEC corrugated with a re-entrant hexagonal honeycomb pattern is studied to monitor strain and stresses for three specific suture patterns: simple interrupted, cruciate, and intradermal patterns. Stress is estimated using constitutive models based on the Fractional Zener and the Kelvin-Voigt models, parametrized using a particle swarm algorithm from experimental data and results from a validated finite element model. Results are benchmarked against findings from the literature and show that SECs are valuable for clinical evaluation of tensile force in biological skins. It was found that both the ranking of suture pattern performance and the sutured skin's Young's modulus using the proposed approach agreed with data reported in the literature and that the estimated stress at the suture level closely matched that of an approximate finite element model.


Assuntos
Técnicas de Sutura , Suturas , Animais , Fenômenos Biomecânicos , Cães , Elasticidade , Humanos , Resistência à Tração
5.
ACS Biomater Sci Eng ; 7(10): 4694-4717, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34498461

RESUMO

Biological additive manufacturing (Bio-AM) has emerged as a promising approach for the fabrication of biological scaffolds with nano- to microscale resolutions and biomimetic architectures beneficial to tissue engineering applications. However, Bio-AM processes tend to introduce flaws in the construct during fabrication. These flaws can be traced to material nonhomogeneity, suboptimal processing parameters, changes in the (bio)printing environment (such as nozzle clogs), and poor construct design, all with significant contributions to the alteration of a scaffold's mechanical properties. In addition, the biological response of endogenous and exogenous cells interacting with the defective scaffolds could become unpredictable. In this review, we first described extrusion-based Bio-AM. We highlighted the salient architectural and mechanotransduction parameters affecting the response of cells interfaced with the scaffolds. The process phenomena leading to defect formation and some of the tools for defect detection are reviewed. The limitations of the existing developments and the directions that the field should grow in order to overcome said limitations are discussed.


Assuntos
Mecanotransdução Celular , Engenharia Tecidual , Alicerces Teciduais
6.
Sensors (Basel) ; 20(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731429

RESUMO

Recent advances in hyperelastic materials and self-sensing sensor designs have enabled the creation of dense compliant sensor networks for the cost-effective monitoring of structures. The authors have proposed a sensing skin based on soft polymer composites by developing soft elastomeric capacitor (SEC) technology that transduces geometric variations into a measurable change in capacitance. A limitation of the technology is in its low gauge factor and lack of sensing directionality. In this paper, we propose a corrugated SEC through surface texture, which provides improvements in its performance by significantly decreasing its transverse Poisson's ratio, and thus improving its sensing directionality and gauge factor. We investigate patterns inspired by auxetic structures for enhanced unidirectional strain monitoring. Numerical models are constructed and validated to evaluate the performance of textured SECs, and to study their performance at monitoring strain on animal skin. Results show that the auxetic patterns can yield a significant increase in the overall gauge factor and decrease the stress experienced by the animal skin, with the re-entrant hexagonal honeycomb pattern outperforming all of the other patterns.


Assuntos
Pele , Animais , Elasticidade , Polímeros
7.
Tissue Eng Part A ; 26(5-6): 279-291, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31964254

RESUMO

Bone defects are common and, in many cases, challenging to treat. Tissue engineering is an interdisciplinary approach with promising potential for treating bone defects. Within tissue engineering, three-dimensional (3D) printing strategies have emerged as potent tools for scaffold fabrication. However, reproducibility and quality control are critical aspects limiting the translation of 3D printed scaffolds to clinical use, which remain to be addressed. To elucidate the factors that yield to the generation of defects in bioprinting and to achieve reproducible biomaterial printing, the objective of this article is to frame a systematic approach for optimizing and validating 3D printing of poly(caprolactone) (PCL)-hydroxyapatite (HAp) composite scaffolds. We delineate the effect of PCL-to-HAp ratio, print velocity, print temperature, and extrusion pressure on the architectural and mechanical properties of the 3D printed scaffold. Furthermore, we present an in situ image-based monitoring approach to quantify key quality-related aspects of constructs, such as the ability to deposit material consistently and print elementary shapes with fewer flaws. Our results show that small defects generated during the printing process have a significant role in lowering the mechanical properties of 3D printed polymeric scaffolds. In addition, the in vitro osteoinductivity of the fabricated scaffolds is demonstrated. Impact statement Identifying quality control measures is essential in the translation of three-dimensional (3D) printed scaffolds into clinical practice. In this article, we highlighted the importance of selected printing parameters on the quality of the 3D printed scaffolds. We also demonstrated that flaws, such as voids, significantly lower the mechanical properties (compressive modulus) of 3D printed polymeric scaffolds.


Assuntos
Durapatita/química , Poliésteres/química , Materiais Biocompatíveis/química , Teste de Materiais , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Mikrochim Acta ; 186(8): 533, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31309292

RESUMO

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers' method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made from both materials displayed excellent H2O2 sensing capability compared to screen-printed carbon electrodes. Laminates made from expanded graphite and treated with platinum, detected H2O2 at a working potential of 0.3 V (vs. Ag/AgCl [0.1 M KCl]) with a 1.91 µM detection limit and sensitivity of 64 nA·µM-1·cm-2. Electrodes made from platinum treated nanoplatelet graphene had a H2O2 detection limit of 1.98 µM (at 0.3 V), and a sensitivity of 16.5 nA·µM-1·cm-2. Both types of laminate electrodes were also tested as glucose sensors via immobilization of the enzyme glucose oxidase. The expanded nanographene material exhibited a wide analytical range for glucose (3.7 µM to 9.9 mM) and a detection limit of 1.2 µM. The sensing range of laminates made from expanded graphite was slightly reduced (9.8 µM to 9.9 mM) and the detection limit for glucose was higher (18.5 µM). When tested on flexible substrates, the expanded graphite laminates demonstrated excellent adhesion and durability during testing. These properties make the electrodes adaptable to a variety of tests for field-based or wearable sensing applications. Graphical abstract Expanded graphite (eGR) and expanded nanoplatelet graphene (nGN) were chemically exfoliated, thermally expanded, and manually stamped into flexible multi-layer graphene laminate electrodes. Hydrogen peroxide amperometric testing of eGR laminates compared to nGN laminates and a screen printed carbon (SPC) electrode.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/análise , Grafite/química , Peróxido de Hidrogênio/análise , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Limite de Detecção , Nanopartículas Metálicas/química , Platina/química , Impressão Tridimensional
9.
BMC Vet Res ; 15(1): 40, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683098

RESUMO

BACKGROUND: Suture materials and techniques are frequently evaluated in ex vivo studies by comparing tensile strengths. However, the direct measurement techniques to obtain the tensile forces in canine skin are not available, and, therefore, the conditions suture lines undergo is unknown. A soft elastomeric capacitor is used to monitor deformation in the skin over time by sensing strain. This sensor was applied to a sample of canine skin to evaluate its capacity to sense strain in the sample while loaded in a dynamic material testing machine. The measured strain of the sensor was compared with the strain measured by the dynamic testing machine. The sample of skin was evaluated with and without the sensor adhered. RESULTS: In this study, the soft elastomeric capacitor was able to measure strain and a correlation was made to stress using a modified Kelvin-Voigt model for the canine skin sample. The sensor significantly increases the stiffness of canine skin when applied which required the derivation of mechanical models for interpretation of the results. CONCLUSIONS: Flexible sensors can be applied to canine skin to investigate the inherent biomechanical properties. These sensors need to be lightweight and highly elastic to avoid interference with the stress across a suture line. The sensor studied here serves as a prototype for future sensor development and has demonstrated that a lightweight highly elastic sensor is needed to decrease the effect on the sensor/skin construct. Further studies are required for biomechanical characterization of canine skin.


Assuntos
Técnicas Biossensoriais/veterinária , Pele , Animais , Fenômenos Biomecânicos , Técnicas Biossensoriais/instrumentação , Cães , Elastômeros/química , Estresse Mecânico , Suturas/veterinária
10.
J Biomater Appl ; 33(1): 82-93, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29683016

RESUMO

Bacterial pathogens that colonize wounds form biofilms, which protect the bacteria from the effect of host immune response and antibiotics. This study examined the effectiveness of newly synthesized zinc sulfide in inhibiting biofilm development by Staphylococcus aureus ( S. aureus) strains. Zinc sulfide (ZnS) was anaerobically biosynthesized to produce CompA, which was further processed by cryomilling to maximize the antibacterial properties to produce CompB. The effect of the two compounds on the S. aureus strain AH133 was compared using zone of inhibition assay. The compounds were formulated in a polyethylene glycol cream. We compared the effect of the two compounds on biofilm development by AH133 and two methicillin-resistant S. aureus clinical isolates using the in vitro model of wound infection. Zone of inhibition assay revealed that CompB is more effective than CompA. At 15 mg/application, the formulated cream of either compound inhibited biofilm development by AH133, which was confirmed using confocal laser scanning microscopy. At 20 mg/application, CompB inhibited biofilm development by the two methicillin-resistant S. aureus clinical isolates. To further validate the effectiveness of CompB, mice were treated using the murine model of wound infection. Colony forming cell assay and in vivo live imaging results strongly suggested the inhibition of S. aureus growth.


Assuntos
Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/prevenção & controle , Sulfetos/química , Infecção dos Ferimentos/tratamento farmacológico , Compostos de Zinco/química , Animais , Antibacterianos/uso terapêutico , Antibioticoprofilaxia , Materiais Biocompatíveis/química , Biofilmes , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polietilenoglicóis/química , Células RAW 264.7 , Sulfetos/uso terapêutico , Propriedades de Superfície , Compostos de Zinco/uso terapêutico
11.
J Biomater Appl ; 30(4): 472-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26152115

RESUMO

Poly(e-caprolactone) (PCL)/poly(glycolic acid) (PGA) scaffolds were fabricated via solid-state cryomilling along with compression molding and porogen leaching techniques. Four types of scaffolds were produced using four distinct cryomilling times. These scaffolds were evaluated for their in-vitro degradation behavior hydrolytically in phosphate buffer saline (PBS). The degradation profiles were investigated over a period of 60 days. The percentage of weight loss, percentage of water absorption, morphology, compressive, thermal, and material properties were studied as a function of degradation time. Weight loss and water absorption demonstrated a high correlation, which showed an increasing behavior with increase in cryomilling time and degradation time. Morphology of the scaffolds analyzed through scanning electron microscopy (SEM) revealed micro-cracks on the surface of the cylindrical struts due to hydrolytic attack and dissolution of hydrophilic PGA. Changes in compressive modulus and crystallinity over the degradation period and material properties were analyzed using X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. DSC and XRD results indicated that hydrolytic attack had taken place during degradation, resulting in moments of increased and decreased percent crystallinity. This study successfully brought forth the differences in resultant properties of the PCL/PGA scaffolds as a function of degradation time.


Assuntos
Poliésteres/química , Ácido Poliglicólico/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Hidrólise , Porosidade , Difração de Pó , Água/química , Difração de Raios X
12.
J Biomater Sci Polym Ed ; 26(7): 401-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671317

RESUMO

In this study, poly(e-caprolactone)/polyglycolic acid (PCL/PGA) scaffolds for repairing articular cartilage were fabricated via solid-state cryomilling along with compression molding and porogen leaching. Four distinct scaffolds were fabricated using this approach by four independent cryomilling times. These scaffolds were assessed for their suitability to promote articular cartilage regeneration with in vitro chondrocyte cell culture studies. The scaffolds were characterized for pore size, porosity, swelling ratio, compressive, and thermal properties. Cryomilling time proved to significantly affect the physical, mechanical, and morphological properties of the scaffolds. In vitro bovine chondrocyte culture was performed dynamically for 1, 7, 14, 28, and 35 days. Chondrocyte viability and adhesion were tested using MTT assay and scanning electron microscopy micrographs. Glycosaminoglycan (GAG) and DNA assays were performed to investigate the extracellular matrix (ECM) formation and cell proliferation, respectively. PCL/PGA scaffolds demonstrated high porosity for all scaffold types. Morphological analysis and poly(ethylene oxide) continuity demonstrated the existence of a co-continuous network of interconnected pores with pore sizes appropriate for tissue engineering and chondrocyte ingrowth. While mean pore size decreased, water uptake and compressive properties increased with increasing cryomilling times. Compressive modulus of 12, 30, and 60 min scaffolds matched the compressive modulus of human articular cartilage. Viable cells increased besides increase in cell proliferation and ECM formation with progress in culture period. Chondrocytes exhibited spherical morphology on all scaffold types. The pore size of the scaffold affected chondrocyte adhesion, proliferation, and GAG secretion. The results indicated that the 12 min scaffolds delivered promising results for applications in articular cartilage repair.


Assuntos
Plásticos Biodegradáveis/química , Cartilagem Articular/citologia , Condrócitos/citologia , Matriz Extracelular/metabolismo , Poliésteres/química , Ácido Poliglicólico/química , Alicerces Teciduais/química , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/ultraestrutura , Bovinos , Adesão Celular , Proliferação de Células , Forma Celular , Sobrevivência Celular , Células Cultivadas , Fenômenos Químicos , Condrócitos/metabolismo , Condrócitos/ultraestrutura , Força Compressiva , Matriz Extracelular/ultraestrutura , Glicosaminoglicanos/biossíntese , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Teste de Materiais , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Porosidade
13.
J Mech Behav Biomed Mater ; 40: 33-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25194523

RESUMO

The aim of this research is to develop a parametric investigation of the fabrication of poly(e-caprolactone) (PCL)/poly(glycolic acid) (PGA) scaffolds to decipher the influence of cryomilling time on the scaffolds' resultant physical, morphological and mechanical characteristics. Scaffolds were fabricated via solid-state cryomilling to prepare a homogeneous blend along with conventional compression molding and porogen leaching yielding interconnected porous scaffolds. PCL/PGA scaffolds fabricated through this technique demonstrated high porosity at all cryomilling times. Morphological analysis revealed a co-continuous interconnected pore network. While mean pore size decreased, water uptake and compressive properties increased with increasing cryomilling times. Porous scaffolds cryomilled for 12min exhibited a mean pore size within the optimal range for tissue engineering and chondrocyte ingrowth. And the compressive modulus of scaffolds cryomilled for 12, 30 and 60min matched the compressive modulus of human articular cartilage. In addition, scaffolds exhibited water uptake, a key requirement in tissue engineering. A 60 day in vitro degradation study revealed mass loss starting from day 10 and increasing through day 60, while notable reduction in compressive properties was observed. The results indicated that cryomilling times affected the resultant properties of PCL/PGA scaffolds and will be interesting candidates for articular cartilage tissue engineering.


Assuntos
Cartilagem Articular/citologia , Temperatura Baixa , Teste de Materiais , Poliésteres/química , Ácido Poliglicólico/química , Engenharia Tecidual , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Força Compressiva , Porosidade , Fatores de Tempo , Água/química
14.
J Biomed Mater Res B Appl Biomater ; 101(6): 1050-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23559444

RESUMO

Three-dimensional interconnected porous poly(ε-caprolactone) scaffolds have been prepared by a novel solventless scaffold fabrication approach combining cryomilling and compression molding/porogen leaching techniques. This study investigated the effects of processing parameters on scaffold morphology and properties for tissue regeneration. Specifically, the effects of molding temperature, cryomilling time, and porogen mix were examined. Fifty percentage of porous scaffolds were fabricated with a range of properties: mean pore size from ∼40 to 125 µm, water uptake from ∼50 to 86%, compressive modulus from ∼45 to 84 MPa, and compressive strength at 10% strain from ∼3 to 4 MPa. Addition of 60 wt % NaCl salt resulted in a ∼50% increase in porosity in multimodal pore-size structures that depended on the method of NaCl addition. Water uptake ranged from ∼61 to 197%, compressive modulus from ∼4 to 8.6 MPa, and compressive strength at 10% strain from ∼0.36 to 0.40 MPa. Results suggest that this approach provides a controllable strategy for the design and fabrication of 3D interconnected porous biodegradable scaffolds for load-bearing tissue regeneration.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Alicerces Teciduais/química , Absorção , Força Compressiva , Teste de Materiais , Microscopia Eletrônica de Varredura , Porosidade , Regeneração , Cloreto de Sódio , Termodinâmica , Engenharia Tecidual , Água , Suporte de Carga
15.
J Mater Sci Mater Med ; 22(8): 1843-53, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21670998

RESUMO

In this study, poly(ε-caprolactone) (PCL)/poly(ethylene oxide) (PEO) (50:50 wt%) immiscible blend was used as a model system to investigate the feasibility of a novel solventless fabrication approach that combines cryomilling, compression molding and porogen leaching techniques to prepare interconnected porous scaffolds for tissue engineering. PCL was cryomilled with PEO to form blend powders. Compression molding was used to consolidate and anneal the cryomilled powders. Selective dissolution of the PEO with water resulted in interconnected porous scaffolds. Sodium chloride salt (NaCl) was subsequently added to cryomilled powder to increase the porosity of scaffolds. The prepared scaffolds had homogeneous pore structures, a porosity of ~50% which was increased by mixing salt with the blend (~70% for 60% wt% NaCl), and a compressive modulus and strength (ε = 10%) of 60 and 2.8 MPa, respectively. The results of the study confirm that this novel approach offers a viable alternative to fabricate scaffolds.


Assuntos
Materiais Biocompatíveis , Poliésteres/química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Pós
16.
Biomed Sci Instrum ; 47: 258-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21525630

RESUMO

Several widely used techniques for the fabrication of three dimensional (3D) scaffolds utilize the particulate leaching method to achieve a porous structure. This method involves the selective leaching of a mineral or an organic compound to generate pores. However, scaffolds prepared by this technique tend to exhibit limited interconnectivity. Therefore, to enhance the interconnectivity of the scaffolds fabricated by particulate leaching, a polymeric porogen can be added during processing. Typically porogens are mixed into a polymer solution, powder, or melt. The mixture is subsequently cast, molded, or extruded, and then leaching the porogens results in porous scaffolds. Still, even though scaffold interconnectivity is improved through the addition of polymer porogens, particulate leaching does not yield scaffolds with uniform properties. This research introduces a new solventless approach, cryomilling, to blend porogens and attain interconnected porous scaffolds with uniform morphologies. To validate the efficacy of the suggested approach a comparison of the effect of various solid-state mixing approaches on scaffold morphology and mechanical properties will be made. In this study, salt particles and poly(ethylene oxide) (PEO) were mixed (manually or through cryomilling) with poly(e-caprolactone) (PCL) for the preparation of porous 3D PCL scaffolds, the mixtures were then compression molded, and subsequently, water was used to leach the porogens. Morphological and compressive properties of the resulting scaffolds will be discussed. This simple, novel, economical, organic solvent-free approach for the fabrication of 3D interconnected porous scaffolds holds promise for tissue engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...