Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 39(3): 319-332, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243349

RESUMO

Autosomal recessive microcephaly or microcephaly primary hereditary (MCPH) is a genetically heterogeneous neurodevelopmental disorder characterized by a reduction in brain volume, indirectly measured by an occipitofrontal circumference (OFC) 2 standard deviations or more below the age- and sex-matched mean (-2SD) at birth and -3SD after 6 months, and leading to intellectual disability of variable severity. The abnormal spindle-like microcephaly gene (ASPM), the human ortholog of the Drosophila melanogaster "abnormal spindle" gene (asp), encodes ASPM, a protein localized at the centrosome of apical neuroprogenitor cells and involved in spindle pole positioning during neurogenesis. Loss-of-function mutations in ASPM cause MCPH5, which affects the majority of all MCPH patients worldwide. Here, we report 47 unpublished patients from 39 families carrying 28 new ASPM mutations, and conduct an exhaustive review of the molecular, clinical, neuroradiological, and neuropsychological features of the 282 families previously reported (with 161 distinct ASPM mutations). Furthermore, we show that ASPM-related microcephaly is not systematically associated with intellectual deficiency and discuss the association between the structural brain defects (strong reduction in cortical volume and surface area) that modify the cortical map of these patients and their cognitive abilities.


Assuntos
Microcefalia/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Pré-Escolar , Cognição , Estudos de Coortes , Família , Feminino , Estudos de Associação Genética , Geografia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Microcefalia/epidemiologia
2.
J Med Genet ; 47(6): 404-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20522430

RESUMO

BACKGROUND Mutations in SCN1A can cause genetic epilepsy with febrile seizures plus (GEFS+, inherited missense mutations) or Dravet syndrome (DS, de novo mutations of all types). Although the mutational spectra are distinct, these disorders share major features and 10% of DS patients have an inherited SCN1A mutation. OBJECTIVES AND PATIENTS 19 selected families with at least one DS patient were studied to describe the mechanisms accounting for inherited SCN1A mutations in DS. The mutation identified in the DS probands was searched in available parents and relatives and quantified in the blood cells of the transmitting parent using quantitative allele specific assays. RESULTS Mosaicism in the blood cells of the transmitting parent was demonstrated in 12 cases and suspected in another case. The proportion of mutated allele in the blood varied from 0.04-85%. In the six remaining families, six novel missense mutations were associated with autosomal dominant variable GEFS+ phenotypes including DS as the more severe clinical picture. CONCLUSION The results indicate that mosaicism is found in at least 7% of families with DS. In the remaining cases (6/19, 32%), the patients were part of multiplex GEFS+ families and seemed to represent the extreme end of the GEFS+ clinical spectrum. In this latter case, additional genetic or environmental factors likely modulate the severity of the expression of the mutation.


Assuntos
Epilepsias Mioclônicas/genética , Predisposição Genética para Doença , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Criança , Códon sem Sentido , Análise Mutacional de DNA , Epilepsias Mioclônicas/patologia , Saúde da Família , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.1 , Linhagem , Sítios de Splice de RNA/genética , Deleção de Sequência , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...