Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ecology ; 99(8): 1802-1814, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29800484

RESUMO

Climate change is affecting the health and physiology of marine organisms and altering species interactions. Ocean acidification (OA) threatens calcifying organisms such as the Pacific oyster, Crassostrea gigas. In contrast, seagrasses, such as the eelgrass Zostera marina, can benefit from the increase in available carbon for photosynthesis found at a lower seawater pH. Seagrasses can remove dissolved inorganic carbon from OA environments, creating local daytime pH refugia. Pacific oysters may improve the health of eelgrass by filtering out pathogens such as Labyrinthula zosterae (LZ), which causes eelgrass wasting disease (EWD). We examined how co-culture of eelgrass ramets and juvenile oysters affected the health and growth of eelgrass and the mass of oysters under different pCO2 exposures. In Phase I, each species was cultured alone or in co-culture at 12°C across ambient, medium, and high pCO2 conditions, (656, 1,158 and 1,606 µatm pCO2 , respectively). Under high pCO2 , eelgrass grew faster and had less severe EWD (contracted in the field prior to the experiment). Co-culture with oysters also reduced the severity of EWD. While the presence of eelgrass decreased daytime pCO2 , this reduction was not substantial enough to ameliorate the negative impact of high pCO2 on oyster mass. In Phase II, eelgrass alone or oysters and eelgrass in co-culture were held at 15°C under ambient and high pCO2 conditions, (488 and 2,013 µatm pCO2 , respectively). Half of the replicates were challenged with cultured LZ. Concentrations of defensive compounds in eelgrass (total phenolics and tannins), were altered by LZ exposure and pCO2 treatments. Greater pathogen loads and increased EWD severity were detected in LZ exposed eelgrass ramets; EWD severity was reduced at high relative to low pCO2 . Oyster presence did not influence pathogen load or EWD severity; high LZ concentrations in experimental treatments may have masked the effect of this treatment. Collectively, these results indicate that, when exposed to natural concentrations of LZ under high pCO2 conditions, eelgrass can benefit from co-culture with oysters. Further experimentation is necessary to quantify how oysters may benefit from co-culture with eelgrass, examine these interactions in the field and quantify context-dependency.


Assuntos
Crassostrea , Zosteraceae , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
2.
Philos Trans R Soc Lond B Biol Sci ; 371(1689)2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26880844

RESUMO

Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19 °C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2-3 °C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State.


Assuntos
Doenças dos Animais/patologia , Estrelas-do-Mar , Animais , Interações Hospedeiro-Patógeno , Densidade Demográfica , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...