Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 649: 750-760, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37385040

RESUMO

The accurate design of labelled oligo probes for the detection of miRNA biomarkers by Surface Enhanced Raman Scattering (SERS) may improve the exploitation of the plasmonic enhancement. This work, thus, critically investigates the role of probe labelling configuration on the performance of SERS-based bioassays for miRNA quantitation. To this aim, highly efficient SERS substrates based on Ag-decorated porous silicon/PDMS membranes are functionalized according to bioassays relying on a one-step or two-step hybridization of the target miRNA with DNA probes. Then, the detection configuration is varied to evaluate the impact of different Raman reporters and their labelling position along the oligo sequence on bioassay sensitivity. At high miRNA concentration (100-10 nM), a significantly increased SERS intensity is detected when the reporters are located closer to the plasmonic surface compared to farther probe labelling positions. Counterintuitively, a levelling-off of the SERS intensity from the different configurations is recorded at low miRNA concentration. Such effect is attributed to the increased relative contribution of Raman hot-spots to the whole SERS signal, in line with the electric near field distribution simulated for a simplified model of the Ag nanostructures. However, the beneficial effect of reducing the reporter-to-surface distance is partially retained for a two-step hybridization assay thanks to the less sterically hindered environment in which the second hybridization occurs. The study thus demonstrates an improvement of the detection limit of the two-step assay by tuning the probe labelling position, but sheds at the same time light on the multiple factors affecting the sensitivity of SERS-based bioassays.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Análise Espectral Raman , Nanopartículas Metálicas/química , Bioensaio
2.
Biomolecules ; 12(11)2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36421732

RESUMO

Dental implants have dramatically changed the rehabilitation procedures in dental prostheses but are hindered by the possible onset of peri-implantitis. This paper aims to assess whether an anodization process applied to clinically used surfaces could enhance the adhesion of fibroblasts and reduce bacterial adhesion using as a reference the untreated machined surface. To this purpose, four different surfaces were prepared: (i) machined (MAC), (ii) machined and anodized (Y-MAC), (iii) anodized after sand-blasting and acid etching treatment (Y-SL), and (iv) anodized after double acid etching (Y-DM). All specimens were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Moreover, the mean contact angle in both water and diiodomethane as well as surface free energy calculation was assessed. To evaluate changes in terms of biological responses, we investigated the adhesion of Streptococcus sanguinis (S. sanguinis) and Enterococcus faecalis (E. faecalis), fetal bovine serum (FBS) adsorption, and the early response of fibroblasts in terms of cell adhesion and viability. We found that the anodization reduced bacterial adhesion, while roughened surfaces outperformed the machined ones for protein adsorption, fibroblast adhesion, and viability independently of the treatment. It can be concluded that surface modification techniques such as anodization are valuable options to enhance the performance of dental implants.


Assuntos
Implantes Dentários , Propriedades de Superfície , Titânio/química , Aderência Bacteriana , Adesão Celular
3.
Biosensors (Basel) ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34940277

RESUMO

A sharpened control over the parameters affecting the synthesis of plasmonic nanostructures is often crucial for their application in biosensing, which, if based on surface-enhanced Raman spectroscopy (SERS), requires well-defined optical properties of the substrate. In this work, a method for the microfluidic synthesis of Ag nanoparticles (NPs) on porous silicon (pSi) was developed, focusing on achieving a fine control over the morphological characteristics and spatial distribution of the produced nanostructures to be used as SERS substrates. To this end, a pSi membrane was integrated in a microfluidic chamber in which the silver precursor solution was injected, allowing for the real-time monitoring of the reaction by UV-Vis spectroscopy. The synthesis parameters, such as the concentration of the silver precursor, the temperature, and the flow rate, were varied in order to study their effects on the final silver NPs' morphology. Variations in the flow rate affected the size distribution of the NPs, whereas both the temperature and the concentration of the silver precursor strongly influenced the rate of the reaction and the particle size. Consistently with the described trends, SERS tests using 4-MBA as a probe showed how the flow rate variation affected the SERS enhancement uniformity, and how the production of larger NPs, as a result of an increase in temperature or of the concentration of the Ag precursor, led to an increased SERS efficiency.


Assuntos
Nanopartículas Metálicas , Microfluídica , Prata , Tamanho da Partícula , Silício , Análise Espectral Raman
4.
ACS Omega ; 6(38): 24562-24574, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604638

RESUMO

MnO x -TiO2 catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH3-SCR (selective catalytic reduction) of NO x have been synthesized by the reverse micelle-assisted sol-gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount. For comparison, a sample at nominal 10 wt % Mn was obtained by impregnation of the (undoped) TiO2 sample. The catalysts were characterized by using an integrated multitechnique approach, encompassing X-ray diffraction followed by Rietveld refinement, micro-Raman spectroscopy, N2 isotherm measurement at -196 °C, energy-dispersive X-ray analysis, diffuse reflectance UV-vis spectroscopy, temperature-programmed reduction technique, and X-ray photoelectron spectroscopy. The obtained results prove that the reverse micelle sol-gel approach allowed for enhancing the catalytic activity, in that the catalysts were active in a broad temperature range at a substantially low Mn loading, as compared to the impregnated catalyst. Particularly, the 5 wt % Mn catalyst showed the best NH3-SCR activity in terms of both NO x conversion (ca. 90%) and the amount of produced N2O (ca. 50 ppm) in the 200-250 °C temperature range.

5.
ACS Omega ; 6(8): 5379-5388, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681577

RESUMO

Six Mo/TiO2 samples (with 0, 1.0, 2.5, 5.0, 7.5, and 10 wt % Mo nominal contents) were obtained by reverse micelle sol-gel synthesis, followed by calcination at 500 °C. The samples were characterized by means of powder X-ray Diffraction (PXRD), quantitative phase analysis as obtained by Rietveld refinement, field-emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray analysis, N2 adsorption/desorption at -196 °C, X-ray photoelectron spectroscopy, and diffuse reflectance (DR) UV-vis spectroscopy. As a whole, the adopted characterization techniques showed the inclusion of a sizeable Mo amount, without the segregation of any MoO x phase. Specifically, PXRD showed the occurrence of anatase and brookite with all the studied samples; notwithstanding the mild calcination temperature, the formation of rutile occurred at Mo wt % ≥2.5 likely due to the presence of brookite favoring, in turn, anatase to rutile transition. DR UV-vis and XP spectroscopies allowed determining the samples' band gap energy (E g) and valence band energy, respectively, from which the conduction band energy was calculated; and the observed E g value increase at 10 wt % Mo was ascribed to the Moss-Burstein effect.

6.
Nanomaterials (Basel) ; 10(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486487

RESUMO

Emerging technologies, such as portable electronics, have had a huge impact on societal norms, such as access to real time information. To perform these tasks, portable electronic devices need more and more accessories for the processing and dispensation of the data, resulting in higher demand for energy and power. To overcome this problem, a low cost high-performing flexible fiber shaped asymmetric supercapacitor was fabricated, exploiting 3D-spinel manganese oxide Mn3O4 as cathode and 2D molybdenum disulfide MoS2 as anode. These asymmetric supercapacitors with stretched operating voltage window of 1.8 V exhibit high specific capacitance and energy density, good rate capability and cyclic stability after 3000 cycles, with a capacitance retention of more than 80%. This device has also shown an excellent bending stability at different bending conditions.

7.
Materials (Basel) ; 13(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012823

RESUMO

A simple, low cost, and "green" method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.

8.
Micromachines (Basel) ; 10(6)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242653

RESUMO

Graphene and 2D materials have been exploited in a growing number of applications and the quality of the deposited layer has been found to be a critical issue for the functionality of the developed devices. Particularly, Chemical Vapor Deposition (CVD) of high quality graphene should be preserved without defects also in the subsequent processes of transferring and patterning. In this work, a lift-off assisted patterning process of Few Layer Graphene (FLG) has been developed to obtain a significant simplification of the whole transferring method and a conformal growth on micrometre size features. The process is based on the lift-off of the catalyst seed layer prior to the FLG deposition. Starting from a SiO2 finished Silicon substrate, a photolithographic step has been carried out to define the micro patterns, then an evaporation of Pt thin film on Al2O3 adhesion layer has been performed. Subsequently, the Pt/Al2O3 lift-off step has been attained using a dimethyl sulfoxide (DMSO) bath. The FLG was grown directly on the patterned Pt seed layer by Chemical Vapor Deposition (CVD). Raman spectroscopy was applied on the patterned area in order to investigate the quality of the obtained graphene. Following the novel lift-off assisted patterning technique a minimization of the de-wetting phenomenon for temperatures up to 1000 °C was achieved and micropatterns, down to 10 µm, were easily covered with a high quality FLG.

9.
ChemistryOpen ; 8(4): 508-519, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31061776

RESUMO

Particularly-shaped silver nanostructures are successfully applied in many scientific fields, such as nanotechnology, catalysis, (nano)engineering, optoelectronics, and sensing. In recent years, the production of shape-controlled silver-based nanostructures and the knowledge around this topic has grown significantly. Hence, on the basis of the most recent results reported in the literature, a critical analysis around the driving forces behind the synthesis of such nanostructures are proposed herein, pointing out the important role of surface-regulating agents in driving crystalline growth by favoring (or opposing) development along specific directions. Additionally, growth mechanisms of the different morphologies considered here are discussed in depth, and critical points highlighted.

10.
Materials (Basel) ; 12(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901826

RESUMO

TiO2 nanoparticles containing 0.0, 1.0, 5.0, and 10.0 wt.% Mo were prepared by a reverse micelle template assisted sol⁻gel method allowing the dispersion of Mo atoms in the TiO2 matrix. Their textural and surface properties were characterized by means of X-ray powder diffraction, micro-Raman spectroscopy, N2 adsorption/desorption isotherms at -196 °C, energy dispersive X-ray analysis coupled to field emission scanning electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV⁻Vis spectroscopy, and ζ-potential measurement. The photocatalytic degradation of Rhodamine B (under visible light and low irradiance) in water was used as a test reaction as well. The ensemble of the obtained experimental results was analyzed in order to discover the actual state of Mo in the final materials, showing the occurrence of both bulk doping and Mo surface species, with progressive segregation of MoOx species occurring only at a higher Mo content.

11.
Int J Oral Maxillofac Implants ; 33(3): 571-579, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29763495

RESUMO

PURPOSE: This research aimed to assess whether pink-shaded anodized surfaces could enhance the adhesion of soft tissue cells compared with untreated machined titanium surfaces. MATERIALS AND METHODS: Two types of Ti-Al-V titanium samples were prepared: machined titanium (Ti) and anodized titanium (AnoTi). The microstructure was studied by means of a scanning electron microscope. X-ray photoelectron spectroscopy (XPS) was carried out as well. The wetting properties were investigated by the sessile drop technique with water and diiodomethane. To investigate the biologic response in vitro, the epithelial cell line HaCaT and the fibroblastic cell line NHDF were used. Cell adhesion, morphology, and proliferation were evaluated. RESULTS: The microstructure of the tested surfaces was irregularly smooth for both types of samples with no relevant morphologic differences. The XPS and HR-XPS performed on the AnoTi samples confirmed the presence of Ti, O, and C, along with Ti oxides. Following the optical contact angle measurements, the anodization process induced a slight transition toward the hydrophobic regime. Consequently, the surface free energy values differed significantly between the anodized and the machined samples. Anodized Ti significantly increased the adhesion and proliferation of both epithelial cells and fibroblasts when compared with the pristine Ti controls. CONCLUSION: Compared with the clinical standard, anodized surfaces could enhance the adhesion of the two major cell types within the peri-implant soft tissues, which makes pink anodization a promising option for implant dentistry.


Assuntos
Adesão Celular/fisiologia , Implantes Dentários , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Titânio , Linhagem Celular , Dente Suporte , Prótese Dentária Fixada por Implante , Células Epiteliais/ultraestrutura , Fibroblastos/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio/química
12.
Biomed Opt Express ; 9(2): 529-542, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29552391

RESUMO

Quantitative detection of angiogenic biomarkers provides a powerful tool to diagnose cancers in early stages and to follow its progression during therapy. Conventional tests require trained personnel, dedicated laboratory equipment and are generally time-consuming. Herein, we propose our developed biosensing platform as a useful tool for a rapid determination of Angiopoietin-2 biomarker directly from patient plasma within 30 minutes, without any sample preparation or dilution. Bloch surface waves supported by one dimensional photonic crystal are exploited to enhance and redirect the fluorescence arising from a sandwich immunoassay that involves Angiopoietin-2. The sensing units consist of disposable and low-cost plastic biochips coated with the photonic crystal. The biosensing platform is demonstrated to detect Angiopoietin-2 in plasma samples at the clinically relevant concentration of 6 ng/mL, with an estimated limit of detection of approximately 1 ng/mL. This is the first Bloch surface wave based assay capable of detecting relevant concentrations of an angiogenic factor in plasma samples. The results obtained by the developed biosensing platform are in close agreement with enzyme-linked immunosorbent assays, demonstrating a good accuracy, and their repeatability showed acceptable relative variations.

13.
Faraday Discuss ; 205: 271-289, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28884170

RESUMO

In this work, SERS-based microfluidic PDMS chips integrating silver-coated porous silicon membranes were used for the detection and quantitation of microRNAs (miRNAs), which consist of short regulatory non-coding RNA sequences typically over- or under-expressed in connection with several diseases such as oncogenesis. In detail, metal-dielectric nanostructures which provide noticeable Raman enhancements were functionalized according to a biological protocol, adapted and optimized from an enzyme-linked immunosorbent assay (ELISA), for the detection of miR-222. Two sets of experiments based on different approaches were designed and performed, yielding a critical comparison. In the first one, the labelled target miRNA is revealed through hybridization to a complementary thiolated DNA probe, immobilized on the silver nanoparticles. In the second one, the probe is halved into shorter strands (half1 and half2) that interact with the complementary miRNA in two steps of hybridization. Such an approach, taking advantage of the Raman labelling of half2, provides a label-free analysis of the target. After suitable optimisation of the procedures, two calibration curves allowing quantitative measurements were obtained and compared on the basis of the SERS maps acquired on the samples loaded with several miRNA concentrations. The selectivity of the two-step assay was confirmed by the detection of target miR-222 mixed with different synthetic oligos, simulating the hybridization interference coming from similar sequences in real biological samples. Finally, that protocol was applied to the analysis of miR-222 in cellular extracts using an optofluidic multichamber biosensor, confirming the potentialities of SERS-based microfluidics for early-cancer diagnosis.


Assuntos
MicroRNAs/análise , Nanoestruturas/química , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Prata/química
14.
Materials (Basel) ; 11(1)2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-29301192

RESUMO

Ruthenium active species containing Ruthenium Sulphide (RuS2) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS2 on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s-1 is 238 F g-1. This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications.

15.
ACS Appl Mater Interfaces ; 8(48): 32842-32852, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934173

RESUMO

A hybrid aerogel, composed of MoS2 sheets of 1T (distorted octahedral) and 2H (trigonal prismatic) phases, finely mixed with few layers of reduced graphene oxide (rGO) and obtained by means of a facile environment-friendly hydrothermal cosynthesis, is proposed as electrode material for supercapacitors. By electrochemical characterizations in three- and two-electrode configurations and symmetric planar devices, unique results have been obtained, with specific capacitance values up to 416 F g-1 and a highly stable capacitance behavior over 50000 charge-discharge cycles. The in-depth morphological and structural characterizations through field emission scanning electron microscopy, Raman, X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller, and transmission electron microscopy analysis provides the proofs of the unique assembly of such 3D structured matrix. The unpacked MoS2 structure exhibits an excellent distribution of 1T and 2H phase sheets that are highly exposed to interaction with the electrolyte, and so available for surface/near-surface redox reactions, notwithstanding the quite low overall content of MoS2 embedded in the reduced graphene oxide (rGO) matrix. A comparison with other "more conventional" hybrid rGO-MoX2 electrochemically active materials, synthesized in the same conditions, is provided to support the outstanding behavior of the cosynthesized rGO-MoS2.

16.
Nanotechnology ; 27(48): 485208, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27819794

RESUMO

This work investigates titanium dioxide nanotube arrays (TiO2-NTA) grown by anodic oxidation as an active material for memristive applications. In particular, metal-insulator-metal structures made of vertically oriented amorphous TiO2-NTA grown on titanium foil were exploited in Ti/TiO2-NTA/Pt devices. The deposition of a polymeric thin film between NTA and top electrodes significantly improved the stability of the devices and increased by more than double the off/on resistance ratio. The resistive switching of TiO2-NTA samples crystallised by thermal annealing was also studied. Such devices displayed nonlinear I-V curves characterised by a smooth rectifying behaviour, without any evident resistive switching (RS). Also in this case, the interposition of the polymeric layer enhanced the RS behaviour of TiO2-NTA samples, remarkably increasing the devices' off/on ratio and endurance. The rise of high resistance states can be simply related to the addition of the polymer as resistance in series, while the variation of the low resistance states is here attributed to the occurrence of surface chemical reactions between polymer functional groups and the metal oxide, which increase the charge carriers available for conduction.

17.
Anal Chem ; 88(19): 9554-9563, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27603514

RESUMO

The development of nanostructured metal-dielectric materials, suitable for biodetection based on surface plasmon resonance and surface enhanced Raman scattering (SERS), requires the refinement of proper biological protocols for their effective exploitation. In this work, the immobilization of DNA probes on nanostructured metal-dielectric/semiconductor substrates has been optimized, to develop a bioassay for the detection of miRNA. To ensure a broad relevance, the proposed biological protocol was applied to different silver-decorated functional supports: porous silicon (pSi), TiO2 nanotube arrays, and polydimethylsiloxane (PDMS). The efficiency and the stability of the substrates were carefully analyzed by Raman spectroscopy and electron microscopy after the incubation in buffers with the appropriate combination of pH, ionic strength, and surfactant content. The customized protocol, initially developed on multiwell plates, was transferred and refined on the nanostructured substrates. The nonspecific interaction of the biological species with the surface was evaluated and reduced thanks to a tailored surface pretreatment. SERS analysis was applied to check the immobilization of DNA probes on pretreated samples. Silvered PDMS-supported pSi membranes, the most promising substrates in terms of stability, were subjected to further optimizations. Concentrations, volume, and duration of incubations were finely adapted with respect to the surface probe density and to the corresponding hybridization of the complementary miRNA. The optimized ELISA-like assay shows sensitivities comparable to those of commercial plates for the detection of miRNA222 (LOD: 485 pM), paving the way for the application of the developed protocol on metal-dielectric/semiconductor nanostructures for ultrasensitive SERS biosensing applications.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , MicroRNAs/análise , Bioensaio/métodos , Sondas de DNA/química , Limite de Detecção , Prata/química , Análise Espectral Raman/métodos , Ressonância de Plasmônio de Superfície/métodos
18.
Mater Sci Eng C Mater Biol Appl ; 65: 287-94, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157754

RESUMO

In order to confer adhesive properties to commercial polypropylene (PP) meshes, a surface plasma-induced deposition of poly-(acrylic acid) (PPAA) is performed. Once biomaterials were functionalized, different post-deposition treatments (i.e. water washing and/or thermal treatments) were investigated with the aim of monitoring the coating degradation (and therefore the loss of adhesion) after 3months of aging in both humid/oxidant (air) and inert (nitrogen) atmospheres. A wide physicochemical characterization was carried out in order to evaluate the functionalization effectiveness and the adhesive coating homogeneity by means of static water drop shape analysis and several spectroscopies (namely, FTIR, UV-Visible and X-ray Photoemission Spectroscopy). The modification of the adhesion properties after post-deposition treatments as well as aging under different storage atmospheres were investigated by means of Atomic Force Microscopy (AFM) used in Force/Distance (F/D) mode. This technique confirms itself as a powerful tool for unveiling the surface adhesion capacity as well as the homogeneity of the functional coatings along the fibers. Results obtained evidenced that post-deposition treatments are mandatory in order to remove all oligomers produced during the plasma-treatment, whereas aging tests evidenced that these devices can be simply stored in presence of air for at least three months without a meaningful degradation of the original properties.


Assuntos
Acrilatos/química , Adesivos/química , Gases em Plasma/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Polimerização , Polipropilenos/química , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Colloids Surf B Biointerfaces ; 143: 252-259, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27022864

RESUMO

A well-organized immobilization of bio-receptors is a crucial goal in biosensing, especially to achieve high reproducibility, sensitivity and specificity. These requirements are usually attained with a controlled chemical/biochemical functionalization that creates a stable layer on a sensor surface. In this work, a chemical modification protocol for silicon-based surfaces to be applied in biosensing devices is presented. An anhydrous silanization step through 3-aminopropylsilane (APTES), followed by a further derivatization with succinic anhydride (SA), is optimized to generate an ordered flat layer of carboxylic groups. The properties of APTES/SA modified surface were compared with a functionalization in which glutaraldehyde (GA) is used as crosslinker instead of SA, in order to have a comparison with an established and largely applied procedure. Moreover, a functionalization based on the controlled deposition of a plasma polymerized acrylic acid (PPAA) thin film was used as a reference for carboxylic reactivity. Advantages and drawbacks of the considered methods are highlighted, through physico-chemical characterizations (OCA, XPS, and AFM) and by means of a functional Protein G/Antibody immunoassay. These analyses reveal that the most homogeneous, reproducible and active surface is achieved by using the optimized APTES/SA coupling.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Ácidos Carboxílicos/química , Silício/química , Glutaral/química , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Ácidos Polimetacrílicos/química , Reprodutibilidade dos Testes , Silanos/química , Anidridos Succínicos/química , Propriedades de Superfície
20.
J Phys Chem B ; 119(25): 8194-200, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26024303

RESUMO

Herein, we report a systematic study on the wetting and optical properties of a PDMS surface coated by silver nanoparticles. A uniform Ag nanoparticles distribution onto PDMS membrane was obtained through dc room-temperature sputtering. The effect of sputtering current and PDMS mixing ratio between oligomer and curing agent was investigated by means of UV-vis spectroscopy and contact angle measurements. The results clearly show that the wettability and optical properties of the silver-coated elastomeric substrate were strongly affected by the sputtering current and by the PDMS composition with a marked decrease of the water contact angle and the spectral shift of well-defined plasmonic dips in the transmittance spectra related to the nanoparticles morphology. The finite element method was employed to model the optical experimental results. The observed tunable properties can find huge applications in several technological fields in which PDMS was usually employed as the structural and/or plasmonic active element.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...