Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(8): 4065-4069, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33350557

RESUMO

In a magnetic field, cubic Fe3 O4 nanoparticles exhibit assembly behavior that is a consequence of a competition between magnetic dipole-dipole and ligand interactions. In most cases, the interactions between short hydrophobic ligands dominate and dictate assembly outcome. To better tune the face-to-face interactions, cubic Fe3 O4 nanoparticles were functionalized with DNA. Their assembly behaviors were investigated both with and without an applied magnetic field. Upon application of a field, the tilted orientation of cubes, enabled by the flexible DNA ligand shell, led to an unexpected crystallographic alignment of the entire superlattice, as opposed to just the individual particles, along the field direction as revealed by small and wide-angle X-ray scattering. This observation is dependent upon DNA length and sequence and cube dimensions. Taken together, these studies show how combining physical and chemical control can expand the possibilities of crystal engineering with DNA.

2.
Small ; 13(36)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28736868

RESUMO

Currently, carbon fibers (CFs) from the solution spinning, air oxidation, and carbonization of polyacrylonitrile impose a lower price limit of ≈$10 per lb, limiting the growth in industrial and automotive markets. Polyethylene is a promising precursor to enable a high-volume industrial grade CF as it is low cost, melt spinnable and has high carbon content. However, sulfonated polyethylene (SPE)-derived CFs have thus far fallen short of the 200 GPa tensile modulus threshold for industrial applicability. Here, a graphitization process is presented catalyzed by the addition of boron that produces carbon fiber with >400 GPa tensile modulus at 2400 °C. Wide angle X-ray diffraction collected during carbonization reveals that the presence of boron reduces the onset of graphitization by nearly 400 °C, beginning around 1200 °C. The B-doped SPE-CFs herein attain 200 GPa tensile modulus and 2.4 GPa tensile strength at the practical carbonization temperature of 1800 °C.

3.
J Synchrotron Radiat ; 23(Pt 6): 1379-1389, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787243

RESUMO

A new high-temperature fibre tensile cell is described, developed for use at the Advanced Photon Source at Argonne National Laboratory to enable the investigation of the carbonization and graphitization processes during carbon fibre production. This cell is used to heat precursor fibre bundles to temperatures up to ∼2300°C in a controlled inert atmosphere, while applying tensile stress to facilitate formation of highly oriented graphitic microstructure; evolution of the microstructure as a function of temperature and time during the carbonization and higher-temperature graphitization processes can then be monitored by collecting real-time wide-angle X-ray diffraction (WAXD) patterns. As an example, the carbonization and graphitization behaviour of an oxidized polyacrylonitrile fibre was studied up to a temperature of ∼1750°C. Real-time WAXD revealed the gradual increase in microstructure alignment with the fibre axis with increasing temperature over the temperature range 600-1100°C. Above 1100°C, no further changes in orientation were observed. The overall magnitude of change increased with increasing applied tensile stress during carbonization. As a second example, the high-temperature graphitizability of PAN- and pitch-derived commercial carbon fibres was studied. Here, the magnitude of graphitic microstructure evolution of the pitch-derived fibre far exceeded that of the PAN-derived fibres at temperatures up to ∼2300°C, indicating its facile graphitizability.

4.
Appl Opt ; 42(7): 1216-27, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12638879

RESUMO

The grating division-of-amplitude photopolarimeter (G-DOAP) is an instrument that exploits the multiple-beam-splitting, polarizing, and dispersive properties of diffraction gratings for the time-resolved measurement of the complete state of polarization of collimated broadband incident light, as represented by the four Stokes parameters as a function of wavelength across the spectrum. It is a compact, high-speed sensor that has no moving parts and is simple to install and operate. These characteristics make the G-DOAP well suited for in situ spectroscopic ellipsometry (SE) applications for monitoring and controlling thin-film processes. The design and performance of a prototype instrument are presented. Precise SE measurements, to +/-0.04 degrees in psi and +/-0.1 degrees in delta, are demonstrated in the 550-940-nm wavelength range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...