Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7592, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371896

RESUMO

A deeper knowledge of the architecture of the peripheral nerve with three-dimensional (3D) imaging of the nerve tissue at the sub-cellular scale may contribute to unravel the pathophysiology of neuropathy. Here we demonstrate the feasibility of X-ray phase contrast holographic nanotomography to enable 3D imaging of nerves at high resolution, while covering a relatively large tissue volume. We show various subcomponents of human peripheral nerves in biopsies from patients with type 1 and 2 diabetes and in a healthy subject. Together with well-organized, parallel myelinated nerve fibres we show regenerative clusters with twisted nerve fibres, a sprouted axon from a node of Ranvier and other specific details. A novel 3D construction (with movie created) of a node of Ranvier with end segment of a degenerated axon and sprout of a regenerated one is captured. Many of these architectural elements are not described in the literature. Thus, X-ray phase contrast holographic nanotomography enables identifying specific morphological structures in 3D in peripheral nerve biopsies from a healthy subject and from patients with type 1 and 2 diabetes.


Assuntos
Neuropatias Diabéticas/diagnóstico por imagem , Neuropatias Diabéticas/patologia , Holografia , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/patologia , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Feminino , Holografia/métodos , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Microscopia , Pessoa de Meia-Idade , Nanotecnologia , Microtomografia por Raio-X/métodos
2.
Phys Med Biol ; 64(16): 165009, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31284279

RESUMO

Here we report a method for increased resolution of single exposure three modality x-ray images using super-resolution. The three x-ray image modalities are absorption-, differential phase-contrast-, and dark-field-images. To create super-resolution, a non-mechanically movable micro-focus x-ray source is used. A series of almost identical x-ray projection images is obtained while the point source is translated in a two-dimensional grid pattern. The three image modalities are extracted from fourier space using spatial harmonic analysis, also known as the single-shot method. Using super-resolution on the low-resolution series of the three modalities separately results in high-resolution images for the modalities. This approach allows to compensate for the inherent loss in resolution caused by the single-shot method without increasing the need for stability or algorithms accounting for possible motion.


Assuntos
Algoritmos , Besouros/anatomia & histologia , Fenômenos Eletromagnéticos , Microscopia de Contraste de Fase/métodos , Animais , Processamento de Imagem Assistida por Computador , Raios X
3.
Sci Rep ; 7(1): 14746, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116170

RESUMO

Botulinum-toxin A (BoNT/A) is used for a wide range of conditions. Intramuscular administration of BoNT/A inhibits the release of acetylcholine at the neuromuscular junction from presynaptic motor neurons causing muscle-paralysis. The aim of the present study was to investigate the effect of high dose intramuscular BoNT/A injections (6 UI = 60 pg) on muscle tissue. The gait pattern of the rats was significantly affected 3 weeks after BoNT/A injection. The ankle joint rotated externally, the rats became flat footed, and the stride length decreased after BoNT/A injection. Additionally, there was clear evidence of microstructural changes on the tissue level by as evidenced by 3D imaging of the muscles by Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM). Both the fibrillar and the non-fibrillar tissues were affected. The volume fraction of fibrillary tissue was reduced significantly and the non-fibrillar tissue increased. This was accompanied by a loss of the linear structure of the muscle tissue. Furthermore, gene expression analysis showed a significant upregulation of COL1A1, MMP-2, TGF-b1, IL-6, MHCIIA and MHCIIx in the BoNT/A injected leg, while MHVIIB was significantly downregulated. IN CONCLUSION: The present study reveals that high dose intramuscular BoNT/A injections cause microstructural damage of the muscle tissue, which contributes to impaired gait.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Toxinas Botulínicas Tipo A/toxicidade , Relação Dose-Resposta a Droga , Marcha/efeitos dos fármacos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Miofibrilas/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...