Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24288, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293390

RESUMO

Isolation rooms are crucial in healthcare facilities to prevent the spread of infectious diseases. Infectious diseases can be transmitted to humans from humans or through animals known as zoonoses. With the increase in the number of COVID-19 cases, isolation rooms have become one of the most critical facilities in hospitals. Maintaining the correct temperature and humidity in these isolation rooms is a challenge, considering the heating, ventilation, and air conditioning (HVAC) systems that continuously consume large amounts of energy. With the application of energy conservation methods, the total energy consumption of HVAC systems can be reduced. Many studies have shown that the heat pipe heat exchanger (HPHE) technology can contribute significantly to energy savings using HVAC systems. In this study, the effectiveness of an HPHE on an HVAC system in an isolation room was examined, and the total energy reduction was quantified. The HPHE consisted of two rows with ten heat pipes in each row, arranged in a staggered configuration with fresh air temperature and mass flow variations. The inlet fresh air temperatures varied at 32, 35, 37, and 40 °C and fresh air velocities at 1.2, 1.6, 2.2, and 2.6 m/s. Using a chiller, the inlet fresh air was cooled to a comfortable temperature zone, approximately 24.4-25.2 °C, in the isolation room. Notably, higher velocities decreased the effectiveness of the HPHE. An increase in the flow rate enhanced the system, thereby improving the heat recovery value. The increase in the inlet fresh air temperature from 32 °C, that yielded an energy saving of 1.23 W, to 40 °C, resulted in a further energy saving of 1.85 W. The application of the HPHE in the HVAC system in isolation rooms represents a significant innovation that contributes to a reduction in total energy consumption.

2.
Entropy (Basel) ; 24(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052083

RESUMO

Indonesia has been blessed with excellent solar heat distribution, which can be used as renewable energy to heat water. Various technologies have been developed to utilize these inexhaustible thermodynamic resources, in the form of photons arrays, converted into concentrated heat for daily use, i.e., solar water heater. This renewable-based water heating system can provide significant energy efficiency, benefit the environment, and reduce energy use costs. This experimental study attempts to harvest the energy from the sun using a cylindrical through collector (CTC) type solar concentrator. The CTC was made of the solar reflective film (SRF) affixed to concentrator collector surfaces which was then mounted on an adjustable angle frame of the concentrator collector support. The heat generated from the concentrator was stored in water, and phase change material is embedded in the system to retain the heat longer. The research was carried out in Langsa City, Aceh, Indonesia. The results showed that water heaters using CTC systems could produce 16 L of hot water retained at 40-60 °C for four hours. With the addition of beeswax, the water temperature of the same capacity can be maintained at 40-60 °C for around 5 h. This technology demonstrated an excellent result that produces as much as 60 L of water per day, increasing solar thermal energy efficiency. This technology presented a great potential for replication or even for further development on an industrial scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA