RESUMO
BACKGROUND: There is a critical need for development of biomarkers to noninvasively monitor for lung transplant rejection. We investigated the potential of circulating donor lung-specific exosome profiles for time-sensitive diagnosis of acute rejection in a rat orthotopic lung transplant model. METHODS: Left lungs from Wistar transgenic rats expressing human CD63-GFP, an exosome marker, were transplanted into fully MHC-mismatched Lewis recipients or syngeneic controls. Recipient blood was collected between 4 h and 10 d after transplantation, and plasma was processed for exosome isolation by size exclusion column chromatography and ultracentrifugation. Circulating donor exosomes were profiled using antihuman CD63 antibody quantum dot on the nanoparticle detector and via GFP trigger on the nanoparticle flow cytometer. RESULTS: In syngeneic controls, steady-state levels of circulating donor exosomes were detected at all posttransplant time points. Allogeneic grafts lost perfusion by day 8, consistent with acute rejection. Levels of circulating donor exosomes peaked on day 1, decreased significantly by day 2, and then reached baseline levels by day 3. Notably, decrease in peripheral donor exosome levels occurred before grafts had histological evidence of acute rejection. CONCLUSIONS: Circulating donor lung-specific exosome profiles enable an early detection of acute rejection before histologic manifestation of injury to the pulmonary allograft. As acute rejection episodes are a major risk factor for the development of chronic lung allograft dysfunction, this biomarker may provide a novel noninvasive diagnostic platform that can translate into earlier therapeutic intervention for lung transplant patients.
Assuntos
Exossomos , Transplante de Pulmão , Animais , Rejeição de Enxerto , Humanos , Pulmão , Transplante de Pulmão/efeitos adversos , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , RoedoresRESUMO
OBJECTIVES: It is not known how lung injury progression during mechanical ventilation modifies pulmonary responses to prone positioning. We compared the effects of prone positioning on regional lung aeration in late versus early stages of lung injury. DESIGN: Prospective, longitudinal imaging study. SETTING: Research imaging facility at The University of Pennsylvania (Philadelphia, PA) and Medical and Surgical ICUs at Massachusetts General Hospital (Boston, MA). SUBJECTS: Anesthetized swine and patients with acute respiratory distress syndrome (acute respiratory distress syndrome). INTERVENTIONS: Lung injury was induced by bronchial hydrochloric acid (3.5 mL/kg) in 10 ventilated Yorkshire pigs and worsened by supine nonprotective ventilation for 24 hours. Whole-lung CT was performed 2 hours after hydrochloric acid (Day 1) in both prone and supine positions and repeated at 24 hours (Day 2). Prone and supine images were registered (superimposed) in pairs to measure the effects of positioning on the aeration of each tissue unit. Two patients with early acute respiratory distress syndrome were compared with two patients with late acute respiratory distress syndrome, using electrical impedance tomography to measure the effects of body position on regional lung mechanics. MEASUREMENTS AND MAIN RESULTS: Gas exchange and respiratory mechanics worsened over 24 hours, indicating lung injury progression. On Day 1, prone positioning reinflated 18.9% ± 5.2% of lung mass in the posterior lung regions. On Day 2, position-associated dorsal reinflation was reduced to 7.3% ± 1.5% (p < 0.05 vs Day 1). Prone positioning decreased aeration in the anterior lungs on both days. Although prone positioning improved posterior lung compliance in the early acute respiratory distress syndrome patients, it had no effect in late acute respiratory distress syndrome subjects. CONCLUSIONS: The effects of prone positioning on lung aeration may depend on the stage of lung injury and duration of prior ventilation; this may limit the clinical efficacy of this treatment if applied late.
Assuntos
Lesão Pulmonar/complicações , Decúbito Ventral/fisiologia , Adulto , Idoso , Boston , Feminino , Humanos , Estudos Longitudinais , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Pennsylvania , Respiração com Pressão Positiva/métodos , Estudos Prospectivos , Resultado do TratamentoRESUMO
RATIONALE AND OBJECTIVES: Cancer cells generate more lactate than normal cells under both aerobic and hypoxic conditions-exhibiting the so-called Warburg effect. However, the relationship between the Warburg effect and tumor metastatic potential remains controversial. We intend to investigate whether the higher lactate reflects higher tumor metastatic potential. MATERIALS AND METHODS: We used hyperpolarized (13)C-pyruvate magnetic resonance spectroscopy (MRS) to compare lactate (13)C-labeling in vivo in mouse xenografts of the highly metastatic (MDA-MB-231) and the relatively indolent (MCF-7) human breast cancer cell lines. We obtained the kinetic parameters of the lactate dehydrogenase (LDH)-catalyzed reaction by three methods of data analysis including the differential equation fit, q-ratio fit, and ratio fit methods. RESULTS: Consistent results from the three methods showed that the highly metastatic tumors exhibited a smaller apparent forward rate constant (k(+) = 0.060 ± 0.004 s(-1)) than the relatively indolent tumors (k(+) = 0.097 ± 0.013 s(-1)). The ratio fit generated the greatest statistical significance for the difference (P = .02). No significant difference in the reverse rate constant was found between the two tumor lines. CONCLUSIONS: The result indicates that the less metastatic breast tumors may produce more lactate than the highly metastatic ones from the injected (13)C-pyruvate and supports the notion that breast tumor metastatic risk is not necessarily associated with the high levels of glycolysis and lactate production. More studies are needed to confirm whether and how much the measured apparent rate constants are affected by the membrane transporter activity and whether they are primarily determined by the LDH activity.