Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0295153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38064492

RESUMO

This paper formulates an innovative model-free self-organizing weight adaptation that strengthens the robustness of a Linear Quadratic Regulator (LQR) for inverted pendulum-like mechatronic systems against perturbations and parametric uncertainties. The proposed control procedure is devised by using an online adaptation law to dynamically adjust the state weighting factors of LQR's quadratic performance index via pre-calibrated state-error-dependent hyperbolic secant functions (HSFs). The updated state-weighting factors re-compute the optimal control problem to modify the state-compensator gains online. The novelty of the proposed article lies in adaptively adjusting the variation rates of the said HSFs via an auxiliary model-free online self-regulation law that uses dissipative and anti-dissipative terms to flexibly re-calibrate the nonlinear function's waveforms as the state errors vary. This augmentation increases the controller's design flexibility and enhances the system's disturbance rejection capacity while economizing control energy expenditure under every operating condition. The proposed self-organizing LQR is analyzed via customized hardware-in-loop (HIL) experiments conducted on the Quanser's single-link rotational inverted pendulum. As compared to the fixed-gain LQR, the proposed SR-EM-STC delivers an improvement of 52.2%, 16.4%, 55.2%, and 42.7% in the pendulum's position regulation behavior, control energy expenditure, transient recovery duration, and peak overshoot, respectively. The experimental outcomes validate the superior robustness of the proposed scheme against exogenous disturbances.

2.
Sci Rep ; 12(1): 17016, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220844

RESUMO

Cancer is one of the foremost causes of death globally. Late-stage presentation, inaccessible diagnosis, and treatment are common challenges in developed countries. Detection, enumeration of Circulating Tumor Cells (CTC) as early as possible can reportedly lead to more effective treatment. The isolation of CTC at an early stage is challenging due to the low probability of its presence in peripheral blood. In this study, we propose a novel two-stage, label-free, rapid, and continuous CTC separation device based on hydrodynamic inertial focusing and dielectrophoretic separation. The dominance and differential of wall-induced inertial lift force and Dean drag force inside a curved microfluidic channel results in size-based separation of Red Blood Cells (RBC) and platelets (size between 2-4 µm) from CTC and leukocytes (9-12.2 µm). A numerical model was used to investigate the mechanism of hydrodynamic inertial focusing in a curvilinear microchannel. Simulations were done with the RBCs, platelets, CTCs, and leukocytes (four major subtypes) to select the optimized value of the parameters in the proposed design. In first stage, the focusing behavior of microscale cells was studied to sort leukocytes and CTCs from RBCs, and platelets while viable CTCs were separated from leukocytes based on their inherent electrical properties using dielectrophoresis in the second stage. The proposed design of the device was evaluated for CTC separation efficiency using numerical simulations. This study considered the influence of critical factors like aspect ratio, dielectrophoretic force, channel size, flow rate, separation efficiency, and shape on cell separation. Results show that the proposed device yields viable CTC with 99.5% isolation efficiency with a throughput of 12.2 ml/h.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular/métodos , Humanos , Leucócitos/patologia , Microfluídica/métodos , Células Neoplásicas Circulantes/patologia
3.
Sci Prog ; 105(3): 368504221117895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938190

RESUMO

The aim of the prosthetic devices is to replicate the able-bodied angle-torque profile of a healthy human during locomotion. A lightweight and energy-efficient ankle joint is able to lower the actuator peak power and/or energy consumption per gait cycle, while adequately fulfilling the profile matching constraints. This study presents the design optimization of the prosthetic ankle joint containing an elastic element and actuator coupled with a rigid triangular part. The dimensions of the ankle joint triangular part were optimized to minimize actuator peak power and maximize spring energy within its elastic limits. As a result of series simulation tests, at 1.1 and 1.6 m/s walking speeds, the simulation of dorsi/plantar flexion shows up to 78.8% and 66.98% reduction in motor peak power compared to a direct drive system, respectively. Low power ankle-prosthetic device that closely matches the angle-torque profile of a healthy human's ankle, is one of the key parameters for the cost-effectiveness of lower limb prostheses.


Assuntos
Tornozelo , Membros Artificiais , Fenômenos Biomecânicos , Marcha , Humanos , Caminhada
4.
Sci Prog ; 105(3): 368504221122291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36039548

RESUMO

This paper formulates an enhanced Model-Reference-Adaptive-Controller (MRAC) that is augmented with a fuzzy-immune adaptive regulator to strengthen the disturbance-attenuation capability of closed-loop under-actuated systems. The proposed scheme employs the conventional state-space MRAC and augments it with a pre-configured fuzzy-immune mechanism that acts as a superior regulator to dynamically modulate the adaptation gains of the Lyapunov gain-adjustment law. The immunological computations increase the controller's adaptability to flexibly manipulate the damping control effort under exogenous disturbances. The efficacy of the proposed Immune-MRAC law is comparatively analyzed under practical disturbance conditions by conducting real-time hardware experiments on the QNET rotary pendulum. The experimental outcomes validate the faster transient-recovery behavior and stronger damping effort of the proposed control law against the exogenous disturbances while preserving the system's asymptotic stability and control energy efficiency.


Assuntos
Lógica Fuzzy
5.
PLoS One ; 16(8): e0256750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34460842

RESUMO

This paper presents an experimental comparison of four different hierarchical self-tuning regulatory control procedures in enhancing the robustness of the under-actuated systems against bounded exogenous disturbances. The proposed hierarchical control procedure augments the ubiquitous Linear-Quadratic-Regulator (LQR) with an online reconfiguration block that acts as a superior regulator to dynamically adjust the critical weighting-factors of LQR's quadratic-performance-index (QPI). The Algebraic-Riccati-Equation (ARE) uses these updated weighting-factors to re-compute the optimal control problem, after every sampling interval, to deliver time-varying state-feedback gains. This article experimentally compares four state-of-the-art rule-based online adaptation mechanisms that dynamically restructure the constituent blocks of the ARE. The proposed hierarchical control procedures are synthesized by self-adjusting the (i) controller's degree-of-stability, (ii) the control-weighting-factor of QPI, (iii) the state-weighting-factors of QPI as a function of "state-error-phases", and (iv) the state-weighting-factors of QPI as a function of "state-error-magnitudes". Each adaptation mechanism is formulated via pre-calibrated hyperbolic scaling functions that are driven by state-error-variations. The implications of each mechanism on the controller's behaviour are analyzed in real-time by conducting credible hardware-in-the-loop experiments on the QNET Rotary-Pendulum setup. The rotary pendulum is chosen as the benchmark platform owing to its under-actuated configuration and kinematic instability. The experimental outcomes indicate that the latter self-adaptive controller demonstrates superior adaptability and disturbances-rejection capability throughout the operating regime.


Assuntos
Algoritmos , Modelos Teóricos
6.
Biomed Pharmacother ; 97: 255-263, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107216

RESUMO

DT-13 is an isolated compound from Dwarf lillytruf tuber and currently among active research drugs by National Natural Science foundation of China for its several potential effects. The drug has been reported for its multiple pharmacological actions however no thorough review studies are available on it. Our present study is highlighting the pros and cons of DT-13 focusing on its potential pharmacological actions, therapeutic utilization and further exploration for novel targets. The drug possesses very low toxicity profile, quick onset and long duration of action with slow elimination that combinely makes it favorable for the clinical studies. In vivo and in vitro studies show that the drug regulates multiple cellular functions for its several pharmacological effects including, anti-adhesive effects via regulation of tissue factor and transforming growth factor; anti-migratory effects through indirect regulation of NM-IIA in the tumor microenvironment, Tissue factor, down-regulation of CCR5-CCL5 axis and MMP-2/9 inhibition; anti-metastatic effects via regulation of MMPs and tissue factor; pro-apoptotic effects by modulation of endocytosis of EGF receptor; anti-angiogenic effects via regulation of HIF-1α,ERK, Akt signalling and autophagy inducing characteristics by regulating PI3K/Akt/mTOR signalling pathway. In addition to anti-tumor activities, DT-13 has significant anti-inflammatory, cardioprotective, hepatoprotective and immunomodulating effects. Pharmaceutical dosage form and targeted drug delivery system for DT-13 has not been established yet. Moreover, DT-13, has not been studied for its action on brain, colorectal, hepatic, pancreatic, prostate and blood cancers. Similarly the effects of drug on carbohydrate and glucose metabolism is another niche yet to be explored. In some traditional therapies, crude drug from the plant is used against diabetic and neurological disorders that are not reported in scientific literature, however due to profound effects of DT-13 on blood and cerebral ischemic disorders, it is reasonable to hypothesize that there could be an association of DT-13 that require further exploration.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Tubérculos , Saponinas/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Saponinas/isolamento & purificação , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...