Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678862

RESUMO

Epilepsy is a common and serious neurological disorder, to which a high proportion of patients continue to be considered "drug-resistant", despite the availability of a host of anti-seizure drugs. Investigation into new treatment strategies is therefore of great importance. One such strategy is the use of the nose to deliver drugs directly to the brain with the help of pharmaceutical formulation to overcome the physical challenges presented by this route. The following review explores intranasal delivery of anti-seizure drugs, covering the link between the nose and seizures, pathways from the nose to the brain, current formulations in clinical use, animal seizure models and their proposed application in studying intranasal treatments, and a critical discussion of relevant pre-clinical studies in the literature.

2.
Pharmaceutics ; 14(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297666

RESUMO

Despite significant advances in developing drugs to treat brain tumours, achieving therapeutic concentrations of the drug at the tumour site remains a major challenge due to the presence of the blood-brain barrier (BBB). Several strategies have evolved to enhance brain delivery of chemotherapeutic agents to treat tumours; however, most approaches have several limitations which hinder their clinical utility. Promising studies indicate that ultrasound can penetrate the skull to target specific brain regions and transiently open the BBB, safely and reversibly, with a high degree of spatial and temporal specificity. In this review, we initially describe the basics of therapeutic ultrasound, then detail ultrasound-based drug delivery strategies to the brain and the mechanisms by which ultrasound can improve brain tumour therapy. We review pre-clinical and clinical findings from ultrasound-mediated BBB opening and drug delivery studies and outline current therapeutic ultrasound devices and technologies designed for this purpose.

3.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012689

RESUMO

OBJECTIVES: This investigation aimed to isolate and culture human dental pulp cells from carious teeth (cHDPCs) and compare their growth characteristics, colony-forming efficiency, mineralization potential and gene expression of Toll-like receptors (TLR)-2, TLR-4, TLR-9, tumour necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-8, IL-17A, 1L-17R, IL-23A, nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK1), dentin matrix protein (DMP)-1, dentin sialophospho protein (DSPP), sex determining region Y-box 2 (SOX2) and marker of proliferation Ki-67 (MKi67) with cells isolated from healthy or non-carious teeth (ncHDPCs). METHODS: Pulp tissues were obtained from both healthy and carious teeth (n = 5, each) to generate primary cell lines using the explant culture technique. Cell cultures studies were undertaken by generating growth curves, a colony forming unit and a mineralization assay analysis. The expression of vimentin was assessed using immunocytochemistry (ICC), and the gene expression of above-mentioned genes was determined using quantitative real-time reverse-transcription polymerase chain reaction. RESULTS: ncHDPCs and cHDPCs were successfully isolated and cultured from healthy and inflamed human dental pulp tissue. At passage 4, both HDPC types demonstrated a typical spindle morphology with positive vimentin expression. No statistical difference was observed between ncHDPCs and cHDPCs in their growth characteristics or ability to differentiate into a mineralizing phenotype. ncHDPCs showed a statistically significant higher colony forming efficiency than cHDPCs. The gene expression levels of TLR-2, TLR-4, TLR-9, TNF-α, IL-6, IL-8, IL-17R, IL-23A, NF-κB, MAPK1, DMP1, DSPP and SOX2 were significantly higher in cHDPCs compared with ncHDPC cultures. CONCLUSION: cHDPCs retain their differentiation potential and inflammatory phenotype in vitro. The inflamed tooth pulp contains viable stem/progenitor cell populations which have the potential for expansion, proliferation and differentiation into a mineralizing lineage, similar to cells obtained from healthy pulp tissue. These findings have positive implications for regenerative endodontic procedures.


Assuntos
Diferenciação Celular , Polpa Dentária , Biomarcadores , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Polpa Dentária/citologia , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Vimentina/metabolismo
4.
J Sep Sci ; 45(14): 2529-2542, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35588117

RESUMO

Phenytoin is a powerful antiseizure drug with complex pharmacokinetic properties, making it an interesting model drug to use in preclinical in vivo investigations, especially with regards to formulations aiming to improve drug delivery to the brain. Moreover, it has a major metabolite, 5-(4-hydroxyphenyl)-5-phenylhydantoin, which can be simultaneously studied to achieve a better assessment of its behaviour in the body. Here, we describe the development and validation of a sensitive LCMS/MS method for quantification of phenytoin and 5-(4-hydroxyphenyl)-5-phenylhydantoin in rat plasma and brain which can be used in such preclinical studies. Calibration curves produced covered a range of 7.81 to 250 ng/mL (plasma) and 23.4 to 750 ng/g (brain tissue) for both analytes. The method was validated for specificity, sensitivity, accuracy, and precision and found to be within the acceptable limits of ±15% over this range in both tissue types. The method when applied in two in vivo investigations: validation of a seizure model and to study the behaviour of a solution of intranasally administered phenytoin as a foundation for future studies into direct nose-to-brain delivery of phenytoin using specifically developed particulate systems, was highly sensitive for detecting phenytoin and 5-(4-hydroxyphenyl)-5-phenylhydantoin in rat plasma and brain.


Assuntos
Fenitoína , Espectrometria de Massas em Tandem , Administração Intravenosa , Animais , Calibragem , Cromatografia Líquida , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
5.
Pharmaceutics ; 14(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456667

RESUMO

Ultrasound-mediated blood-brain barrier (BBB) disruption has garnered focus as a method of delivering normally impenetrable drugs into the brain. Numerous studies have investigated this approach, and a diverse set of ultrasound parameters appear to influence the efficacy and safety of this approach. An understanding of these findings is essential for safe and reproducible BBB disruption, as well as in identifying the limitations and gaps for further advancement of this drug delivery approach. We aimed to collate and summarise protocols and parameters for achieving ultrasound-mediated BBB disruption in animal and clinical studies, as well as the efficacy and safety methods and outcomes associated with each. A systematic search of electronic databases helped in identifying relevant, included studies. Reference lists of included studies were further screened to identify supplemental studies for inclusion. In total, 107 articles were included in this review, and the following parameters were identified as influencing efficacy and safety outcomes: microbubbles, transducer frequency, peak-negative pressure, pulse characteristics, and the dosing of ultrasound applications. Current protocols and parameters achieving ultrasound-mediated BBB disruption, as well as their associated efficacy and safety outcomes, are identified and summarised. Greater standardisation of protocols and parameters in future preclinical and clinical studies is required to inform robust clinical translation.

6.
Pharmaceutics ; 14(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214199

RESUMO

Drug delivery systems have the potential to deliver high concentrations of drug to target areas on demand, while elsewhere and at other times encapsulating the drug, to limit unwanted actions. Here we show proof of concept in vivo and ex vivo tests of a novel drug delivery system based on hollow-gold nanoparticles tethered to liposomes (HGN-liposomes), which become transiently permeable when activated by optical or acoustic stimulation. We show that laser or ultrasound simulation of HGN-liposomes loaded with the GABAA receptor agonist, muscimol, triggers rapid and repeatable release in a sufficient concentration to inhibit neurons and suppress seizure activity. In particular, laser-stimulated release of muscimol from previously injected HGN-liposomes caused subsecond hyperpolarizations of the membrane potential of hippocampal pyramidal neurons, measured by whole cell intracellular recordings with patch electrodes. In hippocampal slices and hippocampal-entorhinal cortical wedges, seizure activity was immediately suppressed by muscimol release from HGN-liposomes triggered by laser or ultrasound pulses. After intravenous injection of HGN-liposomes in whole anesthetized rats, ultrasound stimulation applied to the brain through the dura attenuated the seizure activity induced by pentylenetetrazol. Ultrasound alone, or HGN-liposomes without ultrasound stimulation, had no effect. Intracerebrally-injected HGN-liposomes containing kainic acid retained their contents for at least one week, without damage to surrounding tissue. Thus, we demonstrate the feasibility of precise temporal control over exposure of neurons to the drug, potentially enabling therapeutic effects without continuous exposure. For future application, studies on the pharmacokinetics, pharmacodynamics, and toxicity of HGN-liposomes and their constituents, together with improved methods of targeting, are needed, to determine the utility and safety of the technology in humans.

7.
Int Endod J ; 55 Suppl 1: 3-13, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35030284

RESUMO

BACKGROUND: The pulp contains a resident population of stem cells which can be stimulated to differentiate in order to repair the tooth by generating a mineralized extracellular matrix. Over recent decades there has been considerable interest in utilizing in vitro cell culture models to study dentinogenesis, with the aim of developing regenerative endodontic procedures, particularly where some vital pulp tissue remains. OBJECTIVES: The purpose of this review is to provide a structured oversight of in vitro research methodologies which have been used to study human pulp mineralization processes. METHOD: The literature was screened in the PubMed database up to March 2021 to identify manuscripts reporting the use of human dental pulp cells to study mineralization. The dataset identified 343 publications initially which were further screened and consequently 166 studies were identified and it was methodologically mined for information on: i) study purpose, ii) source and characterization of cells, iii) mineralizing supplements and concentrations, and iv) assays and markers used to characterize mineralization and differentiation, and the data was used to write this narrative review. RESULTS: Most published studies aimed at characterizing new biological stimulants for mineralization as well as determining the effect of scaffolds and dental (bio)materials. In general, pulp cells were isolated by enzymatic digestion, although the pulp explant technique was also common. For enzymatic digestion, a range of enzymes and concentrations were utilized, although collagenase type I and dispase were the most frequent. Isolated cells were not routinely characterized using either fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) approaches and there was little consistency in terming cultures as dental pulp cells or dental pulp stem cells. A combination of media supplements, at a range of concentrations, of dexamethasone, ascorbic acid and beta-glycerophosphate, were frequently applied as the basis for the experimental conditions. Alizarin Red S (ARS) staining was the method of choice for assessment of mineralization at 21-days. Alkaline phosphatase assay was relatively frequently applied, solely or in combination with ARS staining. Further assessment of differentiation status was performed using transcript or protein markers, with dentine sialophosphoprotein (DSPP), osteocalcin and dentine matrix protein-1 (DMP -1), the most frequent. DISCUSSION: While this review highlights variability among experimental approaches, it does however identify a consensus experimental approach. CONCLUSION: Standardization of experimental conditions and sustained research will significantly benefit endodontic patient outcomes in the future.


Assuntos
Polpa Dentária , Sialoglicoproteínas , Fosfatase Alcalina/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Humanos , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo
8.
J Colloid Interface Sci ; 605: 146-154, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34311309

RESUMO

The ability to formulate cubosomes and hexosomes with a single lipid by changing only the colloidal stabiliser presents a unique opportunity to directly compare the biological performance of these uniquely structured nanoparticles. This was explored here via the encapsulation and brain delivery of a model anti-seizure drug, phenytoin, in selachyl alcohol cubosomes and hexosomes. Nanoparticles were prepared with Pluronic® F127 or Tween 80® as the stabiliser and characterised. The internal nanostructure of nanoparticles shifted from hexosomes when using Pluronic® F127 as the stabiliser to cubosomes when using Tween 80® and was conserved following loading of phenytoin, with high encapsulation efficiencies (>97%) in both particle type. Cytotoxicity towards brain endothelial cells using the hCMEC/D3 line was comparable regardless of stabiliser type. Finally, in vivo brain delivery of phenytoin encapsulated in cubosomes and hexosomes after intravenous administration to rats was studied over a period of 60 min, showing cubosomes to be superior to hexosomes, both in terms of brain concentrations and brain to plasma ratio. While the role of stabiliser and/or internal nanostructure remains to be conclusively determined, this study is the first in vivo comparison of cubosomes and hexosomes for the delivery of a therapeutic drug molecule across the BBB and into the brain.


Assuntos
Cristais Líquidos , Nanopartículas , Animais , Encéfalo , Células Endoteliais , Tamanho da Partícula , Fenitoína , Poloxâmero , Ratos
10.
J Sep Sci ; 44(14): 2693-2704, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33939878

RESUMO

Oleoylethanolamide is an endogenous molecule with neuroprotective effects. It has been reported that exogenous oleoylethanolamide can be administered therapeutically, but the confounding presence of the endogenous molecule has led to conflicting reports regarding the mechanisms of the effects and highlights a need for an adequate methodology to differentiate them. We have developed a liquid chromatography-tandem mass spectrometry method to study oleoylethanolamide in rat plasma and brain using a 13 C-labeled isotope, 13 C-oleoylethanolamide. 13 C-oleoylethanolamide was extracted using a liquid-liquid extraction employing acetonitrile and tert-butyl methyl ether (1:4). Analysis was performed using a gradient with a total run time of 12 min. 13 C-oleoylethanolamide, d4 -oleoylethanolamide (internal standard), and 12 C-oleoylethanolamide (endogenous background) eluted simultaneously at 1.64 min. The method was validated for specificity, sensitivity, accuracy, and precision and found to be capable of quantification within acceptable limits of ±15% over the calibration range of 0.39-25 ng/mL for the plasma and 1.17-75 ng/g for the brain. It was then applied to quantify 13 C-oleoylethanolamide over 90 min after intravenous administration of a solution (1 mg/kg) in rats. Results suggest that 13 C-oleoylethanolamide does not reach therapeutic concentrations in the brain, despite a relatively prolonged plasma circulation, suggesting that rapid degradation in the brain remains an obstacle to its clinical application to neurological disease.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida/métodos , Etanolamina , Ácidos Oleicos , Plasma/metabolismo , Animais , Isótopos de Carbono/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Etanolamina/análise , Etanolamina/farmacocinética , Extração Líquido-Líquido/métodos , Ácidos Oleicos/análise , Ácidos Oleicos/farmacocinética , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
11.
Int J Pharm ; 600: 120411, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33675926

RESUMO

The potential of cubosomes to improve delivery of incorporated cargo to the brain was explored in zebrafish. Cubosomes were formulated with one of three stabilisers, Pluronic F68, Pluronic F127 or Tween 80, with the hypothesis that coating with Tween 80 will enable brain targeting of cubosomes as has been previously shown for polymeric nanoparticles. The physiochemical properties and the ability of the cubosomes to facilitate delivery of the model drug lissamine rhodamine (RhoB) into the brain was investigated. Distribution of cubosomes in the midbrain was also investigated by ultrastructural analysis via incorporation of octanethiol-functionalized gold nanoparticles. Cubosomes were typically 165-195 nm in size with a Pn3m (Pluronics) or Im3m (Tween 80) cubic phase internal structure. Cubosomes were injected intravenously into zebrafish larvae (12-14 days post fertilization) and the concentration of RhoB in the midbrain was determined by quantifying its fluorescence intensity. Uptake of RhoB was significantly greater in larvae injected with Tween 80 stabilized cubosomes as compared to a control suspension of RhoB or cubosomes stabilized with Pluronics. Collectively, we show for the first time that cubosomes can be functionalized to deliver drug across the BBB, offering new opportunities to overcome drug delivery issues across this formidable biological barrier.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Preparações Farmacêuticas , Animais , Barreira Hematoencefálica , Ouro , Tamanho da Partícula , Permeabilidade , Peixe-Zebra
12.
Colloids Surf B Biointerfaces ; 192: 111063, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32353710

RESUMO

Linoleoylethanolamide (LEA) is an endogenous lipid with remarkable neuromodulatory properties. However, its therapeutic potential is limited by rapid clearance in vivo, targetability and solubility. This study aimed to formulate LEA into liquid crystalline nanoparticles (cubosomes) as a strategy to address the aforementioned challenges. The influence of three different steric stabilisers: Tween 80 and Pluronic F68, both of which have the potential to interact with receptors expressed at the blood-brain barrier and Pluronic F127 as a control, on colloidal stability, internal structure, chemical stability and cytotoxicity of the dispersions were investigated. We found that for effective stabilization of LEA dispersions, a higher concentration of Tween 80 was required compared to Pluronics. Freshly prepared dispersions showed mean particle size of <250 nm and low PDIs (<0.2), with an Im3m type cubic structure but with different lattice parameters. Upon storage at ambient temperature for a week, increased mean particle size and PDI, with a significant reduction in the concentration of LEA was observed in Tween 80-stabilised dispersions. Greater than 80% cell viability was observed at concentrations of up to 20 µg/mL LEA in the presence of all three stabilisers. Collectively, our results suggest that the stabiliser type influences colloidal and chemical stability but not cytotoxicity of LEA cubosomes. This study highlights the potential of endogenous bioactive lipids to be utilized as core cubosome forming lipids with the view to improving their solubility, rapid clearance and targetability to enable delivery of these bioactive molecules to the brain.

13.
J Aerosol Med Pulm Drug Deliv ; 33(5): 258-270, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32423267

RESUMO

Background: Targeting drugs to the olfactory region in the nasal cavity can bypass the restrictive blood-brain barrier and enhance their direct delivery to the brain. However, complex nasal geometry and its demographical variations can pose challenges for targeted drug deposition in the olfactory region. Deposition of particles in the nasal cavity is influenced by particle size, airflow rate, and nasal geometry. Therefore, this study investigated the effect of these parameters on regional microparticle deposition with the view to provide insights into the nose-to-brain delivery of drugs. Methods: In this study, three anatomically accurate human nasal cavities were reconstructed in silico and deposition of microparticles under nebulization and bi-directional airflow conditions was simulated. Microparticle deposition data were analyzed to gain insight into the effect of particle size and nasal geometry. Results: Maximum olfactory deposition was observed with particles in the size range of 8 to 12 µm under nebulization and 14 to 18 µm under bi-directional airflow condition. Geometric differences between subjects were shown to significantly impact overall and regional particle deposition and introduced inter-subject variability. Significant intra-subject variability in microparticle deposition was also observed in the bi-directional delivery cases. Conclusions: The data from this study suggest that tailoring particle size, combined with a delivery protocol, may provide a unique and pragmatic way to target drugs to the olfactory region. Differences in nasal anatomy among humans can cause variability in particle deposition and need to be considered in any future applications.


Assuntos
Sistemas de Liberação de Medicamentos , Microesferas , Modelos Anatômicos , Cavidade Nasal/metabolismo , Administração por Inalação , Administração Intranasal , Adulto , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Simulação por Computador , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/anatomia & histologia , Tamanho da Partícula , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Distribuição Tecidual
14.
J Colloid Interface Sci ; 534: 399-407, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30245337

RESUMO

Phytantriol is an interfacially-active lipid that is chemically robust, non-digestible and forms particles with internal bicontinuous cubic phase structures (cubosomes) when dispersed with non-ionic surfactants at ambient and physiological temperatures. The liquid crystalline internal structure of phytantriol-based cubosomes can be changed to alter the interfacial contact area/topology with the aqueous dispersant to trigger bioactive payload release or to alter the local membrane curvature around bound or embedded proteins. To enable the study of payload distribution, structure and transformation kinetics within phytantriol particles by neutron scattering techniques it is desirable to have access to a deuterated version of this molecule but to date a synthetic route has not been available. The first successful synthesis of phytantriol-d39 is presented here alongside a preliminary physical characterisation of related particle structures when phytantriol-d39 is dispersed using two non-ionic surfactants, Tween® 80 and Pluronic® F127. Synchrotron small angle X-ray scattering (SAXS) was used to confirm that phytantriol-d39-based nanoparticles in D2O form similar liquid crystalline structures to those of their natural isotopic abundance (phytantriol/H2O) counterparts as a function of temperature. Finally, small angle neutron scattering (SANS) with solvent contrast to match out the phytantriol-d39 structuring was used to show that the spatial correlations between the Tween® and Pluronic® non-ionic surfactant molecules are different within dispersed phytantriol-d39 particles with different liquid crystalline structures in D2O. The surfactant molecules in phytantriol-d39/Tween® 80 particles with Im3m cubic structures were found to follow a self-avoiding walk, whereas in phytantriol-d39/Pluronic® F127 particles with Pn3m cubic structures they were found to follow a more rod-like packing arrangement.

15.
Colloids Surf B Biointerfaces ; 169: 135-142, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29758539

RESUMO

Tween 80 has been reported to provide a means of targeting drug nanocarriers to the blood- brain barrier. This study investigated the influence of addition of Tween 80 on the formation of different bulk and dispersed lyotropic liquid crystalline phases in selachyl alcohol-based systems. The effect of increasing concentrations of Tween 80 and Pluronic F127 (as a control) (0-25% w/w relative to SA) on the bulk phase behaviour and dispersions of selachyl alcohol (SA) were investigated using small angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy. The addition of Tween 80 to SA bulk phase samples triggered concentration-dependent phase changes with the structure sequentially evolving from a reverse hexagonal phase (H2) to a mixed H2 and inverse bicontinuous cubic (V2) then a V2 phase alone. In contrast, the addition of Pluronic F127 resulted in a phase change from H2 phase to a mixed lamellar and H2 phase system. The mean particle size of internally structured particles was 125-190 nm with low polydispersity indices (0.1-0.2). Nanoparticles retained the bulk phase internal structure in the presence of Tween 80, whereas in the presence of Pluronic F127, the additional lamellar phase that formed in bulk phase systems was not observed. Cryo-TEM revealed the formation of cubosomes and hexosomes by SA in excess water in the presence of Tween 80 and Pluronic F127 respectively. In summary, it was shown that stabilisation of SA dispersions using Tween 80 resulted in a decrease in negative curvature leading to a change in internal structure from H2 to V2 phase. The studies provide the core understanding of particle structure to progress these structured lipid nanocarriers into delivery studies with Tween 80 as a mechanism to target the blood-brain barrier.


Assuntos
Álcoois Graxos/química , Lipídeos/química , Nanoestruturas/química , Poloxâmero/química , Polissorbatos/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Água/química
16.
Carbohydr Polym ; 163: 216-226, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28267500

RESUMO

Targeted delivery and retention of drug formulations in the olfactory mucosa, the target site for nose-to-brain drug absorption is a major challenge due to the geometrical complexity of the nose and nasal clearance. Recent modelling data indicates that 10µm-sized microparticles show maximum deposition in the olfactory mucosa. In the present study we tested the hypothesis that 10µm-sized mucoadhesive microparticles would preferentially deposit on, and increase retention of drug on, the olfactory mucosa in a novel 3D-printed human nasal-replica cast under simulated breathing. The naturally occurring mucoadhesive polymer, tamarind seed polysaccharide (TSP) was used to formulate the microparticles using a spray drying technique. Physicochemical properties of microparticles such as size, morphology and mucoadhesiveness was investigated using a combination of laser diffraction, electron microscopy and texture-analysis. Furthermore, FITC-dextrans (5-40kDa) were incorporated in TSP-microparticles as model drugs. Size-dependent permeability of the FITC-dextrans was observed ex vivo using porcine nasal mucosa. Using the human nasal-replica cast, greater deposition of 10µm TSP-microparticles in the olfactory region was observed compared to TSP-microparticles 2µm in size. Collectively, these findings support our hypothesis that 10µm-sized mucoadhesive microparticles can achieve selective deposition and retention of drug in the olfactory mucosa.


Assuntos
Administração Intranasal , Sistemas de Liberação de Medicamentos , Mucosa Nasal , Polissacarídeos/química , Tamarindus/química , Animais , Encéfalo , Humanos , Preparações Farmacêuticas/administração & dosagem , Sementes/química , Suínos
18.
Langmuir ; 32(35): 8942-50, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27524261

RESUMO

Oleoylethanolamide (OEA) is an endogenous lipid with neuroprotective properties and the fortification of its concentration in the brain can be beneficial in the treatment of many neurodegenerative disorders. However, OEA is rapidly eliminated by hydrolysis in vivo, limiting its therapeutic potential. We hypothesize that packing OEA within a nanoparticulate system such as cubosomes, which can be used to target the blood-brain barrier (BBB), will protect it against hydrolysis and enable therapeutic concentrations to reach the brain. Cubosomes are lipid-based nanoparticles with a unique bicontinuous cubic phase internal structure. In the present study, the incorporation and chemical stability of OEA in cubosomes was investigated. Cubosomes containing OEA had a mean particle size of less than 200 nm with low polydispersity (polydispersity index <0.25). Infrared spectroscopy and high-performance liquid chromatography showed chemical stability and the encapsulation of OEA within cubosomes. Cryo-TEM and SAXS measurements were used to probe the influence of the addition of OEA on the internal structure of the cubosomes. Up to 30% w/w OEA (relative to phytantriol) could be incorporated into phytantriol cubosomes without any significant disruption of the nanostructure of the cubosomes. Combined, the results indicate that OEA-loaded cubosomes have the potential for application as a colloidal carrier for OEA, potentially preventing hydrolysis in vivo.


Assuntos
Endocanabinoides/química , Álcoois Graxos/química , Nanopartículas/química , Fármacos Neuroprotetores/química , Ácidos Oleicos/química , Composição de Medicamentos , Estabilidade de Medicamentos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Poloxâmero/química , Polissorbatos/química
19.
Eur J Pharm Biopharm ; 104: 148-55, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27163239

RESUMO

Coating nanoparticles with the surfactant Tween 80 have been previously shown to enhance drug delivery across the blood-brain barrier (BBB). The aim of this study was to investigate whether Tween 80 could be used to stabilise phytantriol-based cubosomes thereby enabling potential application in delivering macromolecular therapeutics to the brain. Cubosome particles with their large internal and external surface area by virtue of their nanostructure are ideal for delivery of macromolecules. Phase behaviour studies were conducted using a combination of optical microscopy and small-angle X-ray scattering (SAXS) and the addition of Tween 80 to mixtures of phytantriol and water resulted in a rich array of lyotropic mesophases. In particular, a large cubic phase region and a two-phase region of readily dispersed cubosomes is observed. Cubosomes with different concentrations of Tween 80 and phytantriol as the liquid crystal forming lipid were prepared using the solvent precursor method and their physical properties were investigated. A combination of dynamic light scattering, cryogenic electron tomography and SAXS shows formation of well-defined cubosomes with a narrow size distribution and the Im3m cubic structure. Collectively, the results confirm that Tween 80 can effectively stabilize phytantriol cubosomes, opening the possibility for future application in drug delivery across the BBB. Moreover, well-defined, homogenous cubosome formulations prepared using the mild solvent precursor dilution method has significant implications for large-scale production of cubosomes, which currently is a major barrier to the application of cubosomes in the clinic.


Assuntos
Barreira Hematoencefálica , Portadores de Fármacos , Lipídeos/química , Nanopartículas , Polissorbatos/química
20.
J Liposome Res ; 22(3): 193-204, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22188610

RESUMO

Sustained release depot systems have been widely investigated for their potential to improve the efficacy of subunit vaccines and reduce the requirement for boosting. The present study aimed to further enhance the immunogenicity of a sustained release vaccine by combining a depot formulation with a particulate antigen delivery system. Sustained release of the model subunit antigen, ovalbumin (OVA), was observed in vivo from chitosan thermogel-based formulations containing cationic, nanosized liposomes loaded with OVA and the immunopotentiator, Quil A (QA). Such formulations demonstrated the ability to induce cluster of differentiation (CD)8(+) and CD4(+) T-cell proliferation and interferon (IFN)-γ production, as well as the production of OVA-specific antibody. However, gel-incorporated liposomes showed evidence of instability and similar in vivo immune responses to liposomes in gel formulations were induced by gel-based systems loaded with soluble OVA and QA. The immunogenicity of chitosan thermogels containing cubosomes, a more stable lipidic particulate system, was therefore examined. Similarly, all gel-based formulations produced comparable effector immune responses in experimental mice, irrespective of whether the antigen and immunopotentiator were present in gels within cubosomes or in a soluble form. This work demonstrates the potential for sustained release thermogelling systems and highlights the importance of matching the physicochemical and immunological properties of the particulate system to that of the depot.


Assuntos
Quitosana/química , Preparações de Ação Retardada/administração & dosagem , Hidrogéis/química , Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Química Farmacêutica/métodos , Quitosana/administração & dosagem , Preparações de Ação Retardada/química , Estabilidade de Medicamentos , Citometria de Fluxo , Hidrogéis/administração & dosagem , Imunidade Humoral , Interferon gama/imunologia , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/administração & dosagem , Ovalbumina/química , Ovalbumina/imunologia , Tamanho da Partícula , Saponinas de Quilaia , Saponinas/administração & dosagem , Vacinas/química , Vacinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...