Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(7): 2530-2535, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010197

RESUMO

Surface-enhanced Raman optical activity (SEROA) has been extensively investigated due to its ability to directly probe stereochemistry and molecular structure. However, most works have focused on the Raman optical activity (ROA) effect arising from the chirality of the molecules on isotropic surfaces. Here, we propose a strategy for achieving a similar effect: i.e., a surface-enhanced Raman polarization rotation effect arising from the coupling of optically inactive molecules with the chiral plasmonic response of metasurfaces. This effect is due to the optically active response of metallic nanostructures and their interaction with molecules, which could extend the ROA potential to inactive molecules and be used to enhance the sensibility performances of surface-enhanced Raman spectroscopy. More importantly, this technique does not suffer from the heating issue present in traditional plasmonic-enhanced ROA techniques, as it does not rely on the chirality of the molecules.

2.
Nanoscale Adv ; 3(17): 4979-4989, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36132337

RESUMO

When a lipid membrane approaches a material/nanomaterial, nonspecific adhesion may occur. The interactions responsible for nonspecific adhesion can either preserve the membrane integrity or lead to its disruption. Despite the importance of the phenomenon, there is still a lack of clear understanding of how and why nonspecific adhesion may originate different resulting scenarios and how these interaction scenarios can be investigated. This work aims at bridging this gap by investigating the role of the interplay between cationic electrostatic and hydrophobic interactions in modulating the membrane stability during nonspecific adhesion phenomena. Here, the stability of the membrane has been studied employing anisotropic nanoprobes in zwitterionic lipid membranes with the support of coarse-grained molecular dynamics simulations to interpret the experimental observations. Lipid membrane electrical measurements and nanoscale visualization in combination with molecular dynamics simulations revealed the phenomena driving nonspecific adhesion. Any interaction with the lipidic bilayer is defect-mediated involving cationic electrostatically driven lipid extraction and hydrophobically-driven chain protrusion, whose interplay determines the existence of a thermodynamic optimum for the membrane structural integrity. These findings unlock unexplored routes to exploit nonspecific adhesion in lipid membranes. The proposed platform can act as a straightforward probing tool to locally investigate interactions between synthetic materials and lipid membranes for the design of antibacterials, antivirals, and scaffolds for tissue engineering.

3.
Glob Chall ; 4(8): 1900111, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32782821

RESUMO

Elongated carbon structures, here denoted as carbon flakes (CF), are revealed after microwave-assisted hydrothermal carbonization of sodium lignosulfonate. The morphology of formed CF is investigated by transmission electron microscopy and atomic force microscopy. Interestingly, a wide range of length distributions (between 100 and 700 nm) and a relatively constant aspect ratio and thickness are observed, indicating structures clearly different from the carbon spheres commonly formed during hydrothermal carbonization of lignocellulosic biomass. Moreover, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy provide further information of the chemical structure, which consist mainly of nanographitic domains with a high degree of defects such as oxygenated functional groups, hybridized sp3 carbon, and aliphatic side chains. Furthermore, new insights into the formation mechanisms are uncovered and the formation is speculated to proceed through the combined effect of microwave irradiation and a heterogeneous solid-solid conversion. The formed CF are anticipated as highly interesting products for a variety of material applications.

4.
Proc Natl Acad Sci U S A ; 116(17): 8161-8166, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30952788

RESUMO

We investigate, with a combination of ultrafast optical spectroscopy and semiclassical modeling, the photothermal properties of various water-soluble nanocrystal assemblies. Broadband pump-probe experiments with ∼100-fs time resolution in the visible and near infrared reveal a complex scenario for their transient optical response that is dictated by their hybrid composition at the nanoscale, comprising metallic (Au) or semiconducting ([Formula: see text]) nanostructures and a matrix of organic ligands. We track the whole chain of energy flow that starts from light absorption by the individual nanocrystals and subsequent excitation of out-of-equilibrium carriers followed by the electron-phonon equilibration, occurring in a few picoseconds, and then by the heat release to the matrix on the 100-ps timescale. Two-dimensional finite-element method electromagnetic simulations of the composite nanostructure and multitemperature modeling of the energy flow dynamics enable us to identify the key mechanism presiding over the light-heat conversion in these kinds of nanomaterials. We demonstrate that hybrid (organic-inorganic) nanocrystal assemblies can operate as efficient nanoheaters by exploiting the high absorption from the individual nanocrystals, enabled by the dilution of the inorganic phase that is followed by a relatively fast heating of the embedding organic matrix, occurring on the 100-ps timescale.

5.
Nanoscale ; 10(30): 14492-14498, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30022204

RESUMO

Nanoparticles (NPs) homogeneously covered with polymer chains or with chains of two different polymers segregated in distinct domains ("Janus" particles) possess remarkable features. Their unique colloidal properties can be finely tuned by the grafted polymers while the characteristics of the nano-core remain unaffected. Herein, a simple and robust photochemical approach is reported to synthesize, from 50 nm cores, homogeneous and Janus "hairy" nanoparticles with hydrophilic and amphiphilic properties, respectively. This is achieved by using a surface-anchored bis(acyl)phosphane oxide photoinitiator which allows a spatially controlled surface-initiated photopolymerization at room temperature. Homogeneous and Janus hairy nanoparticles dispersed in water have very different interaction behaviours which are directly visualized by in situ liquid cell transmission electron microscopy and confirmed by small angle X-ray scattering from a statistically relevant number of particles.

6.
Sci Rep ; 6: 37469, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27881838

RESUMO

Ion beam shaping is a novel and powerful tool to engineer nanocomposites with effective three-dimensional (3D) architectures. In particular, this technique offers the possibility to precisely control the size, shape and 3D orientation of metallic nanoparticles at the nanometer scale while keeping the particle volume constant. Here, we use swift heavy ions of xenon for irradiation in order to successfully fabricate nanocomposites consisting of anisotropic gold nanoparticle that are oriented in 3D and embedded in silica matrix. Furthermore, we investigate individual nanorods using a nonlinear optical microscope based on second-harmonic generation (SHG). A tightly focused linearly or radially-polarized laser beam is used to excite nanorods with different orientations. We demonstrate high sensitivity of the SHG response for these polarizations to the orientation of the nanorods. The SHG measurements are in excellent agreement with the results of numerical modeling based on the boundary element method.

7.
Sci Rep ; 6: 21116, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883992

RESUMO

Ion beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm. Samples have been irradiated with 74 MeV Kr ions at room temperature and for increasing fluences up to 3.8 × 10(14) cm(-2). In parallel, the experimental results have been theoretically simulated by using a three-dimensional code based on the thermal-spike model. These calculations show that the particles undergo a partial melting during the ion impact, and that the amount of molten phase is maximal when the impact is off-center, hitting only one hemisphere of the hollow nano-particle. We suggest a deformation scenario which differs from the one that is generally proposed for solid nano-particles. Finally, these functional materials can be seen as building blocks for the fabrication of nanodevices with really three-dimensional architecture.

8.
Nanotechnology ; 22(47): 475302, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22047998

RESUMO

We investigate the role of capillarity stresses on the ion-hammering phenomenon when sub-micrometer colloidal particles are considered. To this end, nearly monodisperse, chemically synthesized silica (SiO2) colloids (100, 300 and 600 nm) were irradiated at room temperature (300 K) with 4 MeV Au ions for fluences up to Φ = 1.8 × 10¹6 cm⁻². It has been taken for granted that the transverse dimension of an ion-deformable amorphous material grows exponentially with the irradiation fluence, L(φ) = L0exp[A0Φ]. Here, we show that for sub-micrometer particles the irradiation-induced deformation saturates for larger fluences, L(φ)→const. The saturation fluence depends on the initial dimension of the colloidal nanoparticles: the smaller the dimension of the colloids, the lower the saturation fluence. Experimental data are successfully accounted for by having recourse to a phenomenological model first developed by Klaumünzer and further elaborated by van Dillen. We also estimate the evolution with fluence of the principal stresses inside the particles, σ11(φ) = σ22(φ) and σ33(φ), and we show that they evolve toward a steady-state value following a sigmoidal-like behavior. Furthermore, when stresses induced by the surface curvature become non-negligible the approximation often made that the deformation strain rate, A0 = dL/L dΦ, remains constant upon irradiation is no longer valid. We show that A0 evolves with the irradiation fluence, e.g. A0→A(Φ), and we relate this behavior to the evolution of the stresses upon irradiation. Finally, this work allows us to define the limits of the ion-hammering effect when the non-hydrostatic capillarity stresses become important.

9.
Nanotechnology ; 22(17): 175305, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21411926

RESUMO

We have studied how spherical 23 ± 3 nm Au(45)Ag(55) nanoparticles embedded within a silica matrix transform into prolate nanorods and nanowires by irradiating them with swift heavy ions. Samples were irradiated at room temperature and normal incidence with 74 MeV Kr and 36 MeV S ions for fluences up to 1.0 × 10(15) cm(-2). We demonstrate the existence of two regimes: (i) below a critical fluence, ∼ 2.0 × 10(14) cm(-2), the transformation of the spherical nanoparticle into a nanorod is an individual process, i.e. each nanoparticle transforms into a single nanorod; (ii) for larger fluences the transformation from nanorod to nanowire becomes a collective process, i.e. the break up and dissolution of unstable nanorods contribute to the growth of long nanowires. The passage from the first to the second regime can be interpreted in terms of a Rayleigh-like instability under irradiation. The latter becomes active when the diameter of the nanowire approaches its saturation width under irradiation. Furthermore, we show that the composition of the alloy is only slightly modified during the ion-shaping process. Finally, the energy and the fluence thresholds for deformation and the deformation strain-rate are estimated.

10.
Langmuir ; 26(10): 6887-91, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20405865

RESUMO

A quantitative analysis of object populations obtained by TEM images is performed for the classical scheme of aqueous seedless synthesis of nanorods. Using an effective way to represent nanoparticle size distributions, we unravel that spheres, usually considered to be a side-product, are in fact coming from a competing route during nanorod formation. The differentiation between spheres and rods appears above a critical size of 5 nm and is due to different growth rates between faces. The initial repartition of faces on nuclei or on the nanoparticles at the critical size can be the source for the final differentiation between globules and rods. The efficiency of the selection is strongly influenced by the production of the initial seeds and, in particular, by the amount of borohydride added in the present scheme.


Assuntos
Nanosferas/análise , Nanotubos/análise , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Propriedades de Superfície
11.
Chem Commun (Camb) ; (24): 2771-3, 2008 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-18688305

RESUMO

Gold-cross-linked poly(ethylene glycol) nanocomposites were prepared by simultaneous photoinduced electron transfer and free radical polymerization processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...