Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Sports Med ; 53(6): 328-333, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30049779

RESUMO

Various organisations and experts have published numerous statements and recommendations regarding different aspects of sports-related concussion including definition, presentation, treatment, management and return to play guidelines. 1-7 To date, there have been no written consensus statements specific for combat sports regarding management of combatants who have suffered a concussion or for return to competition after a concussion. In combat sports, head contact is an objective of the sport itself. Accordingly, management and treatment of concussion in combat sports should, and must, be more stringent than for non-combat sports counterparts.The Association of Ringside Physicians (an international, non-profit organisation dedicated to the health and safety of the combat sports athlete) sets forth this consensus statement to establish management guidelines that ringside physicians, fighters, referees, trainers, promoters, sanctioning bodies and other healthcare professionals can use in the ringside setting. We also provide guidelines for the return of a combat sports athlete to competition after sustaining a concussion. This consensus statement does not address the management of moderate to severe forms of traumatic brain injury, such as intracranial bleeds, nor does it address the return to competition for combat sports athletes who have suffered such an injury. These more severe forms of brain injuries are beyond the scope of this statement. This consensus statement does not address neuroimaging guidelines in combat sports.


Assuntos
Traumatismos em Atletas/terapia , Concussão Encefálica/terapia , Medicina Esportiva/métodos , Atletas , Consenso , Humanos , Médicos , Volta ao Esporte , Sociedades Médicas
2.
Development ; 144(12): 2248-2258, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506986

RESUMO

During development, extracellular signals are integrated by cells to induce the transcriptional circuitry that controls morphogenesis. In the fly epidermis, Wingless (Wg)/Wnt signaling directs cells to produce either a distinctly shaped denticle or no denticle, resulting in a segmental pattern of denticle belts separated by smooth, or 'naked', cuticle. Naked cuticle results from Wg repression of shavenbaby (svb), which encodes a transcription factor required for denticle construction. We have discovered that although the svb promoter responds differentially to altered Wg levels, Svb alone cannot produce the morphological diversity of denticles found in wild-type belts. Instead, a second Wg-responsive transcription factor, SoxNeuro (SoxN), cooperates with Svb to shape the denticles. Co-expressing ectopic SoxN with svb rescued diverse denticle morphologies. Conversely, removing SoxN activity eliminated the residual denticles found in svb mutant embryos. Furthermore, several known Svb target genes are also activated by SoxN, and we have discovered two novel target genes of SoxN that are expressed in denticle-producing cells and that are regulated independently of Svb. We conclude that proper denticle morphogenesis requires transcriptional regulation by both SoxN and Svb.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Epiderme/embriologia , Epiderme/metabolismo , Fatores de Transcrição SOX/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Modelos Biológicos , Morfogênese/genética , Morfogênese/fisiologia , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição SOX/genética , Transdução de Sinais , Fatores de Transcrição/genética , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
3.
J Cell Sci ; 129(7): 1416-28, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26906417

RESUMO

During bidirectional transport, individual cargoes move continuously back and forth along microtubule tracks, yet the cargo population overall displays directed net transport. How such transport is controlled temporally is not well understood. We analyzed this issue for bidirectionally moving lipid droplets in Drosophila embryos, a system in which net transport direction is developmentally controlled. By quantifying how the droplet distribution changes as embryos develop, we characterize temporal transitions in net droplet transport and identify the crucial contribution of the previously identified, but poorly characterized, transacting regulator Halo. In particular, we find that Halo is transiently expressed; rising and falling Halo levels control the switches in global distribution. Rising Halo levels have to pass a threshold before net plus-end transport is initiated. This threshold level depends on the amount of the motor kinesin-1: the more kinesin-1 is present, the more Halo is needed before net plus-end transport commences. Because Halo and kinesin-1 are present in common protein complexes, we propose that Halo acts as a rate-limiting co-factor of kinesin-1.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Cinesinas/metabolismo , Gotículas Lipídicas/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico , Drosophila melanogaster/metabolismo
5.
BMC Cell Biol ; 12: 9, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21349165

RESUMO

BACKGROUND: In Drosophila, the transport regulator Klar displays tissue-specific localization: In photoreceptors, it is abundant on the nuclear envelope; in early embryos, it is absent from nuclei, but instead present on lipid droplets. Differential targeting of Klar appears to be due to isoform variation. Droplet targeting, in particular, has been suggested to occur via a variant C-terminal region, the LD domain. Although the LD domain is necessary and sufficient for droplet targeting in cultured cells, lack of specific reagents had made it previously impossible to analyze its role in vivo. RESULTS: Here we describe a new mutant allele of klar with a lesion specifically in the LD domain; this lesion abolishes both droplet localization of Klar and the ability of Klar to regulate droplet motion. It does not disrupt Klar's function for nuclear migration in photoreceptors. Using a GFP-LD fusion, we show that the LD domain is not only necessary but also sufficient for droplet targeting in vivo; it mediates droplet targeting in embryos, in ovaries, and in a number of somatic tissues. CONCLUSIONS: Our analysis demonstrates that droplet targeting of Klar occurs via a cis-acting sequence and generates a new tool for monitoring lipid droplets in living tissues of Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Motores Moleculares/metabolismo , Isoformas de Proteínas/metabolismo , Transporte Proteico/genética , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Células Cultivadas , Drosophila/citologia , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Feminino , Proteínas de Fluorescência Verde/genética , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Motores Moleculares/genética , Dados de Sequência Molecular , Mutação , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Ovário/metabolismo , Ovário/ultraestrutura , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência
6.
Fly (Austin) ; 1(4): 245-50, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18820471

RESUMO

The enhancer of rudimentary gene, e(r), encodes a 104-amino-acid, highly conserved transcription cofactor. Hypomorphic mutations of e(r) show an enhancement of a hypomorphic rudimentary mutant wing phenotype. These mutants in a wild-type background are viable, fertile, and morphologically wild-type. Since the only mutant alleles were hypomorphic, it was important to isolate null mutations to determine if any other phenotypes might be associated with a loss-of-function of e(r). We utilized a marked P element, P{SUPor-P, y(+)}, located 895 bp upstream of the start of transcription of e(r) to generate nineteen deficiencies in the region. Deficiencies of e(r) enhance the mutant wing phenotype of a hypomorphic rudimentary allele, r(hd1). In a wild-type background, the deficiencies of e(r), unlike the hypomorphic alleles, have a low viability and females have low fertility. The expression of e(r) in the nurse cells of the ovary is consistent with the low fertility, and suggests an ovarian function for e(r). Deficiencies of CG15352, the gene directly upstream of e(r), are not associated with any obvious mutant phenotypes and present the possibility that it encodes a nonvital or redundant function.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X , Animais , Proteínas de Ciclo Celular/genética , Diacilglicerol Quinase , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Fatores de Transcrição/genética , Asas de Animais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...