Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Langmuir ; 37(22): 6800-6810, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34032431

RESUMO

Electrostatic reaction inhibition in heterogeneous catalysis emerges if charged reactants and products with similar charges are adsorbed on the catalyst and thus repel the approaching reactants. In this work, we study the effects of electrostatic inhibition on the reaction rate of unimolecular reactions catalyzed on the surface of a spherical model nanoparticle using particle-based reaction-diffusion simulations. Moreover, we derive closed rate equations based on an approximate Debye-Smoluchowski rate theory, valid for diffusion-controlled reactions, and a modified Langmuir adsorption isotherm, relevant for reaction-controlled reactions, to account for electrostatic inhibition in the Debye-Hückel limit. We study the kinetics of reactions ranging from low to high adsorptions on the nanoparticle surface and from the surface- to diffusion-controlled limits for charge valencies 1 and 2. In the diffusion-controlled limit, electrostatic inhibition drastically slows down the reactions for strong adsorption and low ionic concentration, which is well described by our theory. In particular, the rate decreases with adsorption affinity because, in this case, the inhibiting products are generated at a high rate. In the (slow) reaction-controlled limit, the effect of electrostatic inhibition is much weaker, as semiquantitatively reproduced by our electrostatic-modified Langmuir theory. We finally propose and verify a simple interpolation formula that describes electrostatic inhibition for all reaction speeds ("diffusion-influenced" reactions) in general.

2.
ACS Nano ; 15(1): 614-624, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33382598

RESUMO

The permeability of hydrogels for the selective transport of molecular penetrants (drugs, toxins, reactants, etc.) is a central property in the design of soft functional materials, for instance in biomedical, pharmaceutical, and nanocatalysis applications. However, the permeation of dense and hydrated polymer membranes is a complex multifaceted molecular-level phenomenon, and our understanding of the underlying physicochemical principles is still very limited. Here, we uncover the molecular principles of permeability and selectivity in hydrogel permeation. We combine the solution-diffusion model for permeability with comprehensive atomistic simulations of molecules of various shapes and polarities in a responsive hydrogel in different hydration states. We find in particular that dense collapsed states are extremely selective, owing to a delicate balance between the partitioning and diffusivity of the penetrants. These properties are sensitively tuned by the penetrant size, shape, and chemistry, leading to vast cancellation effects, which nontrivially contribute to the permeability. The gained insights enable us to formulate semiempirical rules to quantify and extrapolate the permeability categorized by classes of molecules. They can be used as approximate guiding ("rule-of-thumb") principles to optimize penetrant or membrane physicochemical properties for a desired permeability and membrane functionality.


Assuntos
Hidrogéis , Polímeros , Difusão , Permeabilidade
3.
Soft Matter ; 16(35): 8144-8154, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32935731

RESUMO

We study the permeability and selectivity ('permselectivity') of model membranes made of polydisperse polymer networks for molecular penetrant transport, using coarse-grained, implicit-solvent computer simulations. In our work, permeability P is determined on the linear-response level using the solution-diffusion model, P = KDin, i.e., by calculating the equilibrium penetrant partition ratio K and penetrant diffusivity Din inside the membrane. We vary two key parameters, namely the network-network interaction, which controls the degree of swelling and collapse of the network, and the network-penetrant interaction, which tunes the selective penetrant uptake and microscopic energy landscape for diffusive transport. We find that the partitioning K covers four orders of magnitude and is a non-monotonic function of the parameters, well interpreted by a second-order virial expansion of the free energy of transferring one penetrant from a reservoir into the membrane. Moreover, we find that the penetrant diffusivity Din in the polydisperse networks, in contrast to highly ordered membrane structures, exhibits relatively simple exponential decays. We propose a semi-empirical scaling law for the penetrant diffusion that describes the simulation data for a wide range of densities and interaction parameters. The resulting permeability P turns out to follow the qualitative behavior (including maximization and minimization) of partitioning. However, partitioning and diffusion are typically anti-correlated, yielding large quantitative cancellations, controlled and fine-tuned by the network density and interactions, as rationalized by our scaling laws. We finally demonstrate that even small changes of network-penetrant interactions, e.g., by half a kBT, modify the permselectivity by almost one order of magnitude.

4.
ACS Nano ; 13(10): 11224-11234, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31553560

RESUMO

The uptake and sorption of charged molecules by responsive polymer membranes and hydrogels in aqueous solutions is of key importance for the development of soft functional materials. Here, we investigate the partitioning of simple monatomic (Na+, K+, Cs+, Cl-, I-) and one molecular ion (4-nitrophenolate; NP-) within a dense, electroneutral poly(N-isopropylacrylamide) membrane using explicit-water molecular dynamics simulations. Inside the predominantly hydrophobic environment, water distributes in a network of polydisperse water nanoclusters. The average cluster size determines the mean electrostatic self-energy of the simple ions, which preferably reside deeply inside them; we therefore find substantially larger partition ratios K ≃10-1 than expected from a simple Born picture using a uniform dielectric constant. Despite their irregular shapes, we observe that the water clusters possess a universal negative electrostatic potential with respect to their surroundings, as is known for aqueous liquid-vapor interfaces. This potential, which we find concealed in cases of symmetric monatomic salts, can dramatically impact the transfer free energies of larger charged molecules because of their weak hydration and increased affinity to interfaces. Consequently, and in stark contrast to the simple ions, the molecular ion NP- can have a partition ratio much larger than unity, K ≃10-30 (depending on the cation type) or even 103 in excess of monovalent salt, which explains recent observations of enhanced reaction kinetics of NP- reduction catalyzed within dense polymer networks. These results also suggest that ionizing a molecule can even enhance the partitioning in a collapsed, rather hydrophobic gel, which strongly challenges the traditional simplistic reasoning.

5.
Phys Rev Lett ; 122(10): 108001, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932643

RESUMO

Permeability is one of the most fundamental transport properties in soft matter physics, material engineering, and nanofluidics. Here, we report by means of Langevin simulations of ideal penetrants in a nanoscale membrane made of a fixed lattice of attractive interaction sites, how the permeability can be massively tuned, even minimized or maximized, by tailoring the potential energy landscape for the diffusing penetrants, depending on the membrane attraction, topology, and density. Supported by limiting scaling theories we demonstrate that the observed nonmonotonic behavior and the occurrence of extreme values of the permeability is far from trivial and triggered by a strong anticorrelation and substantial (orders of magnitude) cancellation between penetrant partitioning and diffusivity, especially within dense and highly attractive membranes.

6.
Nanomicro Lett ; 11(1): 83, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34138056

RESUMO

Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.

7.
J Phys Chem B ; 123(3): 720-728, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30576139

RESUMO

A central quantity in the design of functional hydrogels used as nanocarrier systems, for instance, for drug delivery or adaptive nanocatalysis, is the partition ratio, which quantifies the uptake of a molecular substance by the polymer matrix. By employing all-atom molecular dynamics simulations, we study the solvation and partitioning (with respect to bulk water) of small subnanometer-sized solutes in a dense matrix of collapsed poly( N-isopropylacrylamide) (PNIPAM) polymers above the lower critical solution temperature in aqueous solution. We examine the roles of the solute's polarity and its size on the solubility properties in the thermoresponsive polymer. We show that the transfer free energies of nonpolar solutes from bulk water into the polymer are favorable and scale in a good approximation with the solute's surface area. Even for small solute size variation, partitioning can vary over orders of magnitude. A polar nature of the solute, on the other hand, generally opposes the transfer, at least for alkyl solutes. Finally, we find a strong correlation between the transfer free energies in the gel and the adsorption free energies on a single extended polymer chain, which enables us to relate the partition ratios in the swollen and collapsed state of a PNIPAM gel.


Assuntos
Resinas Acrílicas/química , Hidrogéis/química , Adsorção , Álcoois/química , Hidrocarbonetos/química , Simulação de Dinâmica Molecular , Solubilidade , Temperatura , Termodinâmica , Água/química
8.
Soft Matter ; 14(20): 4053-4063, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29670972

RESUMO

Metal nanoparticles are receiving increased scientific attention owing to their unique physical and chemical properties that make them suitable for a wide range of applications in diverse fields, such as electrochemistry, biochemistry, and nanomedicine. Their high metallic polarizability is a crucial determinant that defines their electrostatic character in various electrolyte solutions. Here, we introduce a continuum-based model of a metal nanoparticle with explicit polarizability in the presence of different kinds of electrolytes. We employ several, variously sophisticated, theoretical approaches, corroborated by Monte Carlo simulations in order to elucidate the basic electrostatics principles of the model. We investigate how different kinds of asymmetries between the ions result in non-trivial phenomena, such as charge separation and a build-up of a so-called zero surface-charge double layer.

9.
J Chem Phys ; 148(6): 064705, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29448770

RESUMO

Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant-product and product-product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.

10.
ACS Catal ; 7(9): 5604-5611, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28966839

RESUMO

We describe a general theory for surface-catalyzed bimolecular reactions in responsive nanoreactors, catalytically active nanoparticles coated by a stimuli-responsive "gating" shell, whose permeability controls the activity of the process. We address two archetypal scenarios encountered in this system: the first, where two species diffusing from a bulk solution react at the catalyst's surface, and the second, where only one of the reactants diffuses from the bulk while the other is produced at the nanoparticle surface, e.g., by light conversion. We find that in both scenarios the total catalytic rate has the same mathematical structure, once diffusion rates are properly redefined. Moreover, the diffusional fluxes of the different reactants are strongly coupled, providing a behavior richer than that arising in unimolecular reactions. We also show that, in stark contrast to bulk reactions, the identification of a limiting reactant is not simply determined by the relative bulk concentrations but is controlled by the nanoreactor shell permeability. Finally, we describe an application of our theory by analyzing experimental data on the reaction between hexacyanoferrate(III) and borohydride ions in responsive hydrogel-based core-shell nanoreactors.

11.
Phys Chem Chem Phys ; 19(8): 5906-5916, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28176999

RESUMO

Thermoresponsive polymer architectures have become integral building blocks of 'smart' functional materials in modern applications. For a large range of developments, e.g. for drug delivery or nanocatalytic carrier systems, the selective adsorption and partitioning of molecules (ligands or reactants) inside the polymeric matrix are key processes that have to be controlled and tuned for the desired material function. In order to gain insights into the nanoscale structure and binding details in such systems, we here employ molecular dynamics simulations of the popular poly(N-isopropylacrylamide) (PNIPAM) polymer in explicit water in the presence of various representative solute types with a focus on aromatic model reactants. We study a single polymer chain and explore the influence of its elongation, stereochemistry, and temperature on the solute binding affinities. While we find that the excess adsorption generally increases with the size of the solute, the temperature-dependent affinity to the chain is highly solute specific and has a considerable dependence on the polymer elongation (i.e. polymer swelling state). We elucidate the molecular mechanisms of the selective binding in detail and eventually present how the results can be extrapolated to macroscopic partitioning of the solutes in swollen polymer architectures, such as hydrogels.

12.
Soft Matter ; 12(20): 4638-53, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27113088

RESUMO

We present a comprehensive study of cross-flow ultrafiltration (UF) of charge-stabilized suspensions, under low-salinity conditions of electrostatically strongly repelling colloidal particles. The axially varying permeate flux, near-membrane concentration-polarization (CP) layer and osmotic pressure profiles are calculated using a macroscopic diffusion-advection boundary layer method, and are compared with filtration experiments on aqueous suspensions of charge-stabilized silica particles. The theoretical description based on the one-component macroion fluid model (OCM) accounts for the strong influence of surface-released counterions on the renormalized colloid charge and suspension osmotic compressibility, and for the influence of the colloidal hydrodynamic interactions and electric double layer repulsion on the concentration-dependent suspension viscosity η, and collective diffusion coefficient Dc. A strong electro-hydrodynamic enhancement of Dc and η, and likewise of the osmotic pressure, is predicted theoretically, as compared with their values for a hard-sphere suspension. We also point to the failure of generalized Stokes-Einstein relations describing reciprocal relations between Dc and η. According to our filtration model, Dc is of dominant influence, giving rise to an only weakly developed CP layer having practically no effect on the permeate flux. This prediction is quantitatively confirmed by our UF measurements of the permeate flux using an aqueous suspension of charged silica spheres as the feed system. The experimentally detected fouling for the largest considered transmembrane pressure values is shown not to be due to filter cake formation by crystallization or vitrification.

13.
J Colloid Interface Sci ; 455: 46-54, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26051031

RESUMO

In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in setting up the real limits of applicability of the standard cell model for concentrated suspensions by a quantitative analysis of the different effects that have been classically disregarded, showing that in many cases they can be determinant to get rigorous predictions.

14.
Soft Matter ; 11(20): 4106-22, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25921331

RESUMO

Membrane ultrafiltration (UF) is a pressure driven process allowing for the separation and enrichment of protein solutions and dispersions of nanosized microgel particles. The permeate flux and the near-membrane concentration-polarization (CP) layer in this process is determined by advective-diffusive dispersion transport and the interplay of applied and osmotic transmembrane pressure contributions. The UF performance is thus strongly dependent on the membrane properties, the hydrodynamic structure of the Brownian particles, their direct and hydrodynamic interactions, and the boundary conditions. We present a macroscopic description of cross-flow UF of non-ionic microgels modeled as solvent-permeable spheres. Our filtration model involves recently derived semi-analytic expressions for the concentration-dependent collective diffusion coefficient and viscosity of permeable particle dispersions [Riest et al., Soft Matter, 2015, 11, 2821]. These expressions have been well tested against computer simulation and experimental results. We analyze the CP layer properties and the permeate flux at different operating conditions and discuss various filtration process efficiency and cost indicators. Our results show that the proper specification of the concentration-dependent transport coefficients is important for reliable filtration process predictions. We also show that the solvent permeability of microgels is an essential ingredient to the UF modeling. The particle permeability lowers the particle concentration at the membrane surface, thus increasing the permeate flux.


Assuntos
Géis/química , Modelos Teóricos , Difusão , Hidrodinâmica , Membranas Artificiais , Permeabilidade , Ultrafiltração , Viscosidade
15.
J Colloid Interface Sci ; 408: 54-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23953648

RESUMO

A comparison between experimental measurements and theoretical calculations of the permittivity and conductivity of concentrated colloidal suspensions is presented. Dielectric spectroscopy measurements for 100nm and 200nm diameter polystyrene spheres at volume fractions between ϕ=0.01-0.18 and electrolyte concentrations 0.01-1mM KCl (P.J. Beltramo, E.M. Furst, Langmuir 28 (2012) 10703-10712) are compared to cell-model calculations that account for the hydrodynamic and electrokinetic interactions between particles (F. Carrique, F.J. Arroyo, M.L. Jimenez, A.V. Delgado, J. Chem. Phys. 118 (2003) 1945-1956). Under most conditions, there is good agreement between experiment and theory. At low ionic strengths, the dielectric increment exhibits a low-frequency plateau in the experimental spectroscopy and cell model calculations. However, at the highest ionic strengths, the cell model predicts a low frequency plateau that is not observed experimentally. The conductivity increments qualitatively agree over all volume fractions, ionic strengths and frequencies.

16.
J Colloid Interface Sci ; 387(1): 153-61, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22958853

RESUMO

We analyze the influence of finite ion size effects in the response of a salt-free concentrated suspension of spherical particles to an oscillating electric field. Salt-free suspensions are just composed of charged colloidal particles and the added counterions released by the particles to the solution that counterbalance their surface charge. In the frequency domain, we study the dynamic electrophoretic mobility of the particles and the dielectric response of the suspension. We find that the Maxwell-Wagner-O'Konski process associated with the counterions condensation layer is enhanced for moderate to high particle charges, yielding an increment of the mobility for such frequencies. We also find that the increment of the mobility grows with ion size and particle charge. All these facts show the importance of including ion size effects in any extension attempting to improve standard electrokinetic models.

17.
Phys Chem Chem Phys ; 13(43): 19437-48, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21960204

RESUMO

We study the electrophoretic mobility of spherical particles and the electrical conductivity in salt-free concentrated suspensions including finite ion size effects. An ideal salt-free suspension is composed of just charged colloidal particles and the added counterions that counterbalance their surface charge. In a very recent paper [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960-3968] we presented a model for the equilibrium electric double layer for this kind of suspensions considering the size of the counterions, and now we extend this work to analyze the response of the suspension under a static external electric field. The numerical results show the high importance of such corrections for moderate to high particle charges, especially when a region of closest approach of the counterions to the particle surface is considered. The present work sets the basis for further theoretical models with finite ion size corrections, concerning particularly the ac electrokinetics and rheology of such systems.

18.
Phys Chem Chem Phys ; 13(20): 9644-54, 2011 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21494730

RESUMO

A new modified Poisson-Boltzmann equation accounting for the finite size of the ions valid for realistic salt-free concentrated suspensions has been derived, extending the formalism developed for pure salt-free suspensions [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960-3968] to real experimental conditions. These realistic suspensions include water dissociation ions and those generated by atmospheric carbon dioxide contamination, in addition to the added counterions released by the particles to the solution. The electric potential at the particle surface will be calculated for different ion sizes and compared with classical Poisson-Boltzmann predictions for point-like ions, as a function of particle charge and volume fraction. The realistic predictions turn out to be essential to achieve a closer picture of real salt-free suspensions, and even more important when ionic size effects are incorporated to the electric double layer description. We think that both corrections have to be taken into account when developing new realistic electrokinetic models, and surely will help in the comparison with experiments for low-salt or realistic salt-free systems.

19.
Phys Chem Chem Phys ; 13(9): 3960-8, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21218242

RESUMO

The equilibrium electric double layer (EDL) that surrounds colloidal particles is essential for the response of a suspension under a variety of static or alternating external fields. An ideal salt-free suspension is composed of charged colloidal particles and ionic countercharges released by the charging mechanism. Existing macroscopic theoretical models can be improved by incorporating different ionic effects usually neglected in previous mean-field approaches, which are based on the Poisson-Boltzmann equation (PB). The influence of the finite size of the ions seems to be quite promising because it has been shown to predict phenomena like charge reversal, which has been out of the scope of classical PB approximations. In this work we numerically obtain the surface electric potential and the counterion concentration profiles around a charged particle in a concentrated salt-free suspension corrected by the finite size of the counterions. The results show the high importance of such corrections for moderate to high particle charges at every particle volume fraction, especially when a region of closest approach of the counterions to the particle surface is considered. We conclude that finite ion size considerations are obeyed for the development of new theoretical models to study non-equilibrium properties in concentrated colloidal suspensions, particularly salt-free ones with small and highly charged particles.

20.
Arch. venez. pueric. pediatr ; 56(1): 35-8, ene.-mar. 1993. tab
Artigo em Espanhol | LILACS | ID: lil-192618

RESUMO

Se revisaron las historias clínicas de 23 recién nacidos del Departamento de Pediatría del Hospital Central "Antonio María Pineda" de Barquisimeto, Venezuela que ingresaron con el diagnóstico de meningoencefalitis y/o sepsis a S.marcescens desde el 1º de junio al 27 de julio de 1990. La infección fué catalogada como hospitalaria y posiblemente adquirida en sala de partos, habiendo sido una incubadora de transporte y un recipiente de aspirador para uso en recién nacidos las responsables fuentes. El 61 por ciento de los neonatos fueron pretérminos; 61 por ciento con peso inferior a 2.500 gr; 70 por ciento correspondió al sexo masculino; 32 por ciento presentó síntomas en las primeras 72 horas de vida; 78 por ciento de los partos fueron eutócicos; falleció el 87 por ciento de los pacientes de los cuales el 78 por ciento en los primeros 5 días luego de presentar manifestaciones clínicas. Todas las cepas de serratia marcescens fueron productoras de petalactamasas y resistentes a aminoglicósidos, piperacilina y ceftriaxones pero sensibles a ceftaximide, aztreonam, imipenem y quinolonas. Se sugiere vigilar el cumplimiento de normas de asepsia y antisepsia en todas las áreas hospitalarias, para lo cual es virta el funcionamiento de Comités de infecciones Hospitalarias y utilizar antimicrobianos para disminuir el riesgo de resistencia por parte de enterobacterias mediada por belactamasas, inducible por antimicrobianos.


Assuntos
Recém-Nascido , Humanos , Masculino , Feminino , Infecção Hospitalar , Recém-Nascido , Serratia marcescens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...