Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 7(47): 19940-8, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26499391

RESUMO

This study explores the use of block copolymer self-assembly to organize Lsmα, a protein which forms stable doughnut-shaped heptameric structures. Here, we have explored the idea that 2-D crystalline arrays of protein filaments can be prepared by stacking doughnut shaped Lsmα protein into the poly(ethylene oxide) blocks of a hexagonal microphase-separated polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer. We were able to demonstrate the coordinated assembly of such a complex hierarchical nanostructure. The key to success was the choice of solvent systems and protein functionalization that achieved sufficient compatibility whilst still promoting assembly. Unambiguous characterisation of these structures is difficult; however AFM and TEM measurements confirmed that the protein was sequestered into the PEO blocks. The use of a protein that assembles into stackable doughnuts offers the possibility of assembling nanoscale optical, magnetic and electronic structures.

2.
Ultramicroscopy ; 150: 71-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25536471

RESUMO

We have developed a simple technique to allow for the lift-off and subsequent transfer of poly(styrene-block-ethylene glycol) films to Transmission Electron Microscopy (TEM) grids. The block copolymer is spin coated onto carbon coated mica and annealed. After the thin film is produced it can easily be floated onto water and picked up by a TEM grid. This method offers better control over film processing than dip coating the TEM grid and is also a significant improvement over methods using etchants such as hydrofluoric acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...