Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771704

RESUMO

The ability of organisms to adapt to sudden extreme environmental changes produces some of the most drastic examples of rapid phenotypic evolution. The Mexican Tetra, Astyanax mexicanus, is abundant in the surface waters of northeastern Mexico, but repeated colonizations of cave environments have resulted in the independent evolution of troglomorphic phenotypes in several populations. Here, we present three chromosome-scale assemblies of this species, for one surface and two cave populations, enabling the first whole-genome comparisons between independently evolved cave populations to evaluate the genetic basis for the evolution of adaptation to the cave environment. Our assemblies represent the highest quality of sequence completeness with predicted protein-coding and non-coding gene metrics far surpassing prior resources and, to our knowledge, all long-read assembled teleost genomes, including zebrafish. Whole genome synteny alignments show highly conserved gene order among cave forms in contrast to a higher number of chromosomal rearrangements when compared to other phylogenetically close or distant teleost species. By phylogenetically assessing gene orthology across distant branches of amniotes, we discover gene orthogroups unique to A. mexicanus. When compared to a representative surface fish genome, we find a rich amount of structural sequence diversity, defined here as the number and size of insertions and deletions as well as expanding and contracting repeats across cave forms. These new more complete genomic resources ensure higher trait resolution for comparative, functional, developmental, and genetic studies of drastic trait differences within a species.

2.
bioRxiv ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38014157

RESUMO

The ability of organisms to adapt to sudden extreme environmental changes produces some of the most drastic examples of rapid phenotypic evolution. The Mexican Tetra, Astyanax mexicanus, is abundant in the surface waters of northeastern Mexico, but repeated colonizations of cave environments have resulted in the independent evolution of troglomorphic phenotypes in several populations. Here, we present three chromosome-scale assemblies of this species, for one surface and two cave populations, enabling the first whole-genome comparisons between independently evolved cave populations to evaluate the genetic basis for the evolution of adaptation to the cave environment. Our assemblies represent the highest quality of sequence completeness with predicted protein-coding and non-coding gene metrics far surpassing prior resources and, to our knowledge, all long-read assembled teleost genomes, including zebrafish. Whole genome synteny alignments show highly conserved gene order among cave forms in contrast to a higher number of chromosomal rearrangements when compared to other phylogenetically close or distant teleost species. By phylogenetically assessing gene orthology across distant branches of amniotes, we discover gene orthogroups unique to A. mexicanus. When compared to a representative surface fish genome, we find a rich amount of structural sequence diversity, defined here as the number and size of insertions and deletions as well as expanding and contracting repeats across cave forms. These new more complete genomic resources ensure higher trait resolution for comparative, functional, developmental, and genetic studies of drastic trait differences within a species.

3.
iScience ; 25(2): 103778, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146393

RESUMO

Introgressive hybridization may play an integral role in local adaptation and speciation (Taylor and Larson, 2019). In the Mexican tetra Astyanax mexicanus, cave populations have repeatedly evolved traits including eye loss, sleep loss, and albinism. Of the 30 caves inhabited by A. mexicanus, Chica cave is unique because it contains multiple pools inhabited by putative hybrids between surface and cave populations (Mitchell et al., 1977), providing an opportunity to investigate the impact of hybridization on complex trait evolution. We show that hybridization between cave and surface populations may contribute to localized variation in traits associated with cave evolution, including pigmentation, eye development, and sleep. We also uncover an example of convergent evolution in a circadian clock gene in multiple cavefish lineages and burrowing mammals, suggesting a shared genetic mechanism underlying circadian disruption in subterranean vertebrates. Our results provide insight into the role of hybridization in facilitating phenotypic evolution.

4.
PLoS Genet ; 17(7): e1009642, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252077

RESUMO

Circadian rhythms are nearly ubiquitous throughout nature, suggesting they are critical for survival in diverse environments. Organisms inhabiting largely arrhythmic environments, such as caves, offer a unique opportunity to study the evolution of circadian rhythms in response to changing ecological pressures. Populations of the Mexican tetra, Astyanax mexicanus, have repeatedly invaded caves from surface rivers, where individuals must contend with perpetual darkness, reduced food availability, and limited fluctuations in daily environmental cues. To investigate the molecular basis for evolved changes in circadian rhythms, we investigated rhythmic transcription across multiple independently-evolved cavefish populations. Our findings reveal that evolution in a cave environment has led to the repeated disruption of the endogenous biological clock, and its entrainment by light. The circadian transcriptome shows widespread reductions and losses of rhythmic transcription and changes to the timing of the activation/repression of core-transcriptional clock. In addition to dysregulation of the core clock, we find that rhythmic transcription of the melatonin regulator aanat2 and melatonin rhythms are disrupted in cavefish under darkness. Mutants of aanat2 and core clock gene rorca disrupt diurnal regulation of sleep in A. mexicanus, phenocopying circadian modulation of sleep and activity phenotypes of cave populations. Together, these findings reveal multiple independent mechanisms for loss of circadian rhythms in cavefish populations and provide a platform for studying how evolved changes in the biological clock can contribute to variation in sleep and circadian behavior.


Assuntos
Evolução Biológica , Characidae/fisiologia , Relógios Circadianos/genética , Proteínas de Peixes/genética , Animais , Encéfalo/fisiologia , Cavernas , Characidae/genética , Relógios Circadianos/fisiologia , Evolução Molecular , Regulação da Expressão Gênica , Genética Populacional , Hibridização in Situ Fluorescente , Fígado/fisiologia , Melatonina/metabolismo , Mutação , Sono/genética , Sono/fisiologia
5.
Nat Commun ; 10(1): 4091, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501425

RESUMO

Organisms rely upon external cues to avoid detrimental conditions during environmental change. Rapid water loss, or desiccation, is a universal threat for terrestrial plants and animals, especially under climate change, but the cues that facilitate plastic responses to avoid desiccation are unclear. We integrate acclimation experiments with gene expression analyses to identify the cues that regulate resistance to water loss at the physiological and regulatory level in a montane salamander (Plethodon metcalfi). Here we show that temperature is an important cue for developing a desiccation-resistant phenotype and might act as a reliable cue for organisms across the globe. Gene expression analyses consistently identify regulation of stem cell differentiation and embryonic development of vasculature. The temperature-sensitive blood vessel development suggests that salamanders regulate water loss through the regression and regeneration of capillary beds in the skin, indicating that tissue regeneration may be used for physiological purposes beyond replacing lost limbs.


Assuntos
Mudança Climática , Sinais (Psicologia) , Dessecação , Temperatura , Urodelos/fisiologia , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Redes Reguladoras de Genes , Lipídeos/química , Neovascularização Fisiológica/genética , Fatores de Risco , Pele , Transcrição Gênica , Transcriptoma/genética , Urodelos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...