Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Phys Rev Lett ; 132(14): 143402, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640397

RESUMO

We report on the observation of spontaneously drifting coupled spin and quadrupolar density waves in the ground state of laser driven Rubidium atoms. These laser-cooled atomic ensembles exhibit spontaneous magnetism via light mediated interactions when submitted to optical feedback by a retroreflecting mirror. Drift direction and chirality of the waves arise from spontaneous symmetry breaking. The observations demonstrate a novel transport process in out-of-equilibrium magnetic systems.

2.
RNA ; 29(11): 1803-1817, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625853

RESUMO

The mammalian mRNA 5' cap structures play important roles in cellular processes such as nuclear export, efficient translation, and evading cellular innate immune surveillance and regulating 5'-mediated mRNA turnover. Hence, installation of the proper 5' cap is crucial in therapeutic applications of synthetic mRNA. The core 5' cap structure, Cap-0, is generated by three sequential enzymatic activities: RNA 5' triphosphatase, RNA guanylyltransferase, and cap N7-guanine methyltransferase. Vaccinia virus RNA capping enzyme (VCE) is a heterodimeric enzyme that has been widely used in synthetic mRNA research and manufacturing. The large subunit of VCE D1R exhibits a modular structure where each of the three structural domains possesses one of the three enzyme activities, whereas the small subunit D12L is required to activate the N7-guanine methyltransferase activity. Here, we report the characterization of a single-subunit RNA capping enzyme from an amoeba giant virus. Faustovirus RNA capping enzyme (FCE) exhibits a modular array of catalytic domains in common with VCE and is highly efficient in generating the Cap-0 structure without an activation subunit. Phylogenetic analysis suggests that FCE and VCE are descended from a common ancestral capping enzyme. We found that compared to VCE, FCE exhibits higher specific activity, higher activity toward RNA containing secondary structures and a free 5' end, and a broader temperature range, properties favorable for synthetic mRNA manufacturing workflows.


Assuntos
Nucleotidiltransferases , RNA , Animais , Filogenia , RNA Mensageiro/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/química , Metiltransferases/genética , Guanina , Capuzes de RNA/genética , Mamíferos/genética
3.
Nat Biotechnol ; 41(3): 409-416, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36203014

RESUMO

Methods for in vitro DNA cleavage and molecular cloning remain unable to precisely cleave DNA directly adjacent to bases of interest. Restriction enzymes (REs) must bind specific motifs, whereas wild-type CRISPR-Cas9 or CRISPR-Cas12 nucleases require protospacer adjacent motifs (PAMs). Here we explore the utility of our previously reported near-PAMless SpCas9 variant, named SpRY, to serve as a universal DNA cleavage tool for various cloning applications. By performing SpRY DNA digests (SpRYgests) using more than 130 guide RNAs (gRNAs) sampling a wide diversity of PAMs, we discovered that SpRY is PAMless in vitro and can cleave DNA at practically any sequence, including sites refractory to cleavage with wild-type SpCas9. We illustrate the versatility and effectiveness of SpRYgests to improve the precision of several cloning workflows, including those not possible with REs or canonical CRISPR nucleases. We also optimize a rapid and simple one-pot gRNA synthesis protocol to streamline SpRYgest implementation. Together, SpRYgests can improve various DNA engineering applications that benefit from precise DNA breaks.


Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , Sistemas CRISPR-Cas/genética , DNA/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas
4.
EMBO Rep ; 23(12): e55481, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36268581

RESUMO

Most CRISPR-type V nucleases are stimulated to cleave double-stranded (ds) DNA targets by a T-rich PAM, which restricts their targeting range. Here, we identify and characterize a new family of type V RNA-guided nuclease, Cas12l, that exclusively recognizes a C-rich (5'-CCY-3') PAM. The organization of genes within its CRISPR locus is similar to type II-B CRISPR-Cas9 systems, but both sequence analysis and functional studies establish it as a new family of type V effector. Biochemical experiments show that Cas12l nucleases function optimally between 37 and 52°C, depending on the ortholog, and preferentially cut supercoiled DNA. Like other type V nucleases, it exhibits collateral nonspecific ssDNA and ssRNA cleavage activity that is triggered by ssDNA or dsDNA target recognition. Finally, we show that one family member, Asp2Cas12l, functions in a heterologous cellular environment, altogether, suggesting that this new group of CRISPR-associated nucleases may be harnessed as genome editing reagents.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
5.
RNA ; 28(8): 1144-1155, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35680168

RESUMO

Advances in mRNA synthesis and lipid nanoparticles technologies have helped make mRNA therapeutics and vaccines a reality. The 5' cap structure is a crucial modification required to functionalize synthetic mRNA for efficient protein translation in vivo and evasion of cellular innate immune responses. The extent of 5' cap incorporation is one of the critical quality attributes in mRNA manufacturing. RNA cap analysis involves multiple steps: generation of predefined short fragments from the 5' end of the kilobase-long synthetic mRNA molecules using RNase H, a ribozyme or a DNAzyme, enrichment of the 5' cleavage products, and LC-MS intact mass analysis. In this paper, we describe (1) a framework to design site-specific RNA cleavage using RNase H; (2) a method to fluorescently label the RNase H cleavage fragments for more accessible readout methods such as gel electrophoresis or high-throughput capillary electrophoresis; (3) a simplified method for post-RNase H purification using desthiobiotinylated oligonucleotides and streptavidin magnetic beads followed by elution using water. By providing a design framework for RNase H-based RNA 5' cap analysis using less resource-intensive analytical methods, we hope to make RNA cap analysis more accessible to the scientific community.


Assuntos
Lipossomos , Ribonuclease H , Nanopartículas , Capuzes de RNA/genética , RNA Mensageiro/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo
6.
Commun Biol ; 5(1): 325, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388146

RESUMO

CRISPR-Cas12a proteins are RNA-guided endonucleases that cleave invading DNA containing target sequences adjacent to protospacer adjacent motifs (PAM). Cas12a orthologs have been repurposed for genome editing in non-native organisms by reprogramming them with guide RNAs to target specific sites in genomic DNA. After single-turnover dsDNA target cleavage, multiple-turnover, non-specific single-stranded DNA cleavage in trans is activated. This property has been utilized to develop in vitro assays to detect the presence of specific DNA target sequences. Most applications of Cas12a use one of three well-studied enzymes. Here, we characterize the in vitro activity of two previously unknown Cas12a orthologs. These enzymes are active at higher temperatures than widely used orthologs and have subtle differences in PAM preference, on-target cleavage, and trans nuclease activity. Together, our results enable refinement of Cas12a-based in vitro assays especially when elevated temperature is desirable.


Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , DNA/genética , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
7.
Cell Chem Biol ; 29(2): 321-327.e4, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34343484

RESUMO

RNA-targeting CRISPR-Cas13 proteins have recently emerged as a powerful platform to modulate gene expression outcomes. However, protein and CRISPR RNA (crRNA) delivery in human cells can be challenging with rapid crRNA degradation yielding transient knockdown. Here we compare several chemical RNA modifications at different positions to identify synthetic crRNAs that improve RNA targeting efficiency and half-life in human cells. We show that co-delivery of modified crRNAs and recombinant Cas13 enzyme in ribonucleoprotein (RNP) complexes can alter gene expression in primary CD4+ and CD8+ T cells. This system represents a robust and efficient method to modulate transcripts without genetic manipulation.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/genética , Células Cultivadas , Edição de Genes , Humanos , RNA Guia de Cinetoplastídeos/síntese química , RNA Guia de Cinetoplastídeos/química
8.
J Therm Biol ; 99: 102973, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420617

RESUMO

The subterranean niche is a specialised and particularly challenging environment to obtain direct physiological and behavioural measurements from free-living animals. Rhythmicity has been examined in many mole-rat species in the laboratory, but field reports are relatively scarce. We implanted Natal mole-rats with temperature loggers in summer and winter to record core body temperature (Tb), before releasing the animals again. Animals were recaptured after two months to recover the loggers. Natal mole-rats can maintain rhythmicity of their Tb in their natural habitat and display seasonal differences in their Tb rhythms. During winter mole-rats have unimodal Tb rhythms, whereas in summer many animals have bimodal Tb patterns, which may be related to temperatures in the foraging burrows close to the soil surface. Individuals from the same colonies frequently exhibited similar rhythms, especially in the larger colonies, which may indicate social entrainment of rhythms. Males and females differ in their seasonal variation of Tb, with males having more variation in winter, while the opposite was true for females. Entire colonies may undergo sporadic torpor bouts, presumably to conserve energy, but the trigger for these events is unknown. This is the first report of torpor occurring in an African mole-rat species. The ability to respond to environmental and social cues, while rhythms remain flexible, can provide an adaptive advantage to animals living in challenging and energetically demanding habitats.


Assuntos
Regulação da Temperatura Corporal , Temperatura Corporal , Ratos-Toupeira/fisiologia , Animais , Ritmo Circadiano , Feminino , Masculino , Estações do Ano
9.
CRISPR J ; 4(1): 82-91, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33538626

RESUMO

The ability of CRISPR-Cas12a nucleases to function reliably in a wide range of species has been key to their rapid adoption as genome engineering tools. However, so far, Cas12a nucleases have been limited for use in organisms with growth temperatures up to 37 °C. Here, we biochemically characterize three Cas12a orthologs for their temperature stability and activity. We demonstrate that Francisella novicida Cas12a (FnCas12a) has great biochemical potential for applications that require enhanced stability, including use at temperatures >37°C. Furthermore, by employing the moderate thermophilic bacterium Bacillus smithii as our experimental platform, we demonstrate that FnCas12a is active in vivo at temperatures up to 43°C. Subsequently, we develop a single-plasmid FnCas12a-based genome editing tool for B. smithii, combining the FnCas12a targeting system with plasmid-borne homologous recombination (HR) templates that carry the desired modifications. Culturing of B. smithii cells at 45°C allows for the uninhibited realization of the HR-based editing step, while a subsequent culturing step at reduced temperatures induces the efficient counterselection of the non-edited cells by FnCas12a. The developed gene-editing tool yields gene-knockout mutants within 3 days, and does not require tightly controllable expression of FnCas12a to achieve high editing efficiencies, indicating its potential for other (thermophilic) bacteria and archaea, including those with minimal genetic toolboxes. Altogether, our findings provide new biochemical insights into three widely used Cas12a nucleases, and establish the first Cas12a-based bacterial genome editing tools for moderate thermophilic microorganisms.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Endodesoxirribonucleases/genética , Edição de Genes , Bacillus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/genética , Escherichia coli , Francisella/genética , Genoma Bacteriano , Plasmídeos , Recombinação Genética
10.
Nat Commun ; 11(1): 5512, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139742

RESUMO

Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Biologia Computacional , Clivagem do DNA , RNA Guia de Cinetoplastídeos/metabolismo , Homologia de Sequência do Ácido Nucleico
11.
Nature ; 583(7817): 638-643, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555463

RESUMO

N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA1-3. However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac4C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac4C at single-nucleotide resolution. In human and yeast mRNAs, ac4C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac4C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac4C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac4C and its potential thermoadaptive role. Our studies quantitatively define the ac4C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease4-6.


Assuntos
Acetilação , Citidina/análogos & derivados , Células Eucarióticas/metabolismo , Evolução Molecular , RNA/química , RNA/metabolismo , Archaea/química , Archaea/citologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Sequência Conservada , Microscopia Crioeletrônica , Citidina/metabolismo , Células Eucarióticas/citologia , Células HeLa , Humanos , Modelos Moleculares , Acetiltransferases N-Terminal/metabolismo , RNA Arqueal/química , RNA Arqueal/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Temperatura
12.
Nat Microbiol ; 4(5): 888-897, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833733

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) machineries are prokaryotic immune systems that have been adapted as versatile gene editing and manipulation tools. We found that CRISPR nucleases from two families, Cpf1 (also known as Cas12a) and Cas9, exhibit differential guide RNA (gRNA) sequence requirements for cleavage of the two strands of target DNA in vitro. As a consequence of the differential gRNA requirements, both Cas9 and Cpf1 enzymes can exhibit potent nickase activities on an extensive class of mismatched double-stranded DNA (dsDNA) targets. These properties allow the production of efficient nickases for a chosen dsDNA target sequence, without modification of the nuclease protein, using gRNAs with a variety of patterns of mismatch to the intended DNA target. In parallel to the nicking activities observed with purified Cas9 in vitro, we observed sequence-dependent nicking for both perfectly matched and partially mismatched target sequences in a Saccharomyces cerevisiae system. Our findings have implications for CRISPR spacer acquisition, off-target potential of CRISPR gene editing/manipulation, and tool development using homology-directed nicking.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Desoxirribonuclease I/metabolismo , Endonucleases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Bactérias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , Desoxirribonuclease I/genética , Endonucleases/genética , Marcação de Genes , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
RNA ; 25(1): 35-44, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30348755

RESUMO

Cas9 nuclease is the key effector of type II CRISPR adaptive immune systems found in bacteria. The nuclease can be programmed by a single guide RNA (sgRNA) to cleave DNA in a sequence-specific manner. This property has led to its widespread adoption as a genome editing tool in research laboratories and holds great promise for biotechnological and therapeutic applications. The general mechanistic features of catalysis by Cas9 homologs are comparable; however, a high degree of diversity exists among the protein sequences, which may result in subtle mechanistic differences. S. aureus (SauCas9) and especially S. pyogenes (SpyCas9) are among the best-characterized Cas9 proteins and share ∼17% sequence identity. A notable feature of SpyCas9 is an extremely slow rate of reaction turnover, which is thought to limit the amount of substrate DNA cleavage. Using in vitro biochemistry and enzyme kinetics, we directly compare SpyCas9 and SauCas9 activities. Here, we report that in contrast to SpyCas9, SauCas9 is a multiple-turnover enzyme, which to our knowledge is the first report of such activity in a Cas9 homolog. We also show that DNA cleaved with SauCas9 does not undergo any detectable single-stranded degradation after the initial double-stranded break observed previously with SpyCas9, thus providing new insights and considerations for future design of CRISPR/Cas9-based applications.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Staphylococcus aureus/enzimologia , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Edição de Genes , Cinética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Especificidade da Espécie , Staphylococcus aureus/genética , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Especificidade por Substrato
14.
Nucleic Acids Res ; 44(16): 7511-26, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27317694

RESUMO

The 5' m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2'O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.


Assuntos
Capuzes de RNA/metabolismo , Animais , Células Eucarióticas/metabolismo , Humanos , Modelos Moleculares , Nucleotidiltransferases/metabolismo , Capuzes de RNA/química , RNA Viral/metabolismo
15.
Opt Express ; 23(11): 14823-35, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072841

RESUMO

We consider Bloch oscillations of ultracold atoms stored in a one-dimensional vertical optical lattice and simultaneously interacting with a unidirectionally pumped optical ring cavity whose vertical arm is collinear with the optical lattice. We find that the feedback provided by the cavity field on the atomic motion synchronizes Bloch oscillations via a mode-locking mechanism, steering the atoms to the lowest Bloch band. It also stabilizes Bloch oscillations against noise, and even suppresses dephasing due to atom-atom interactions. Furthermore, it generates periodic bursts of light emitted into the counter-propagating cavity mode, providing a non-destructive monitor of the atomic dynamics. All these features may be crucial for future improvements of the design of atomic gravimeters based on recording Bloch oscillations.

16.
PLoS One ; 10(5): e0126049, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942392

RESUMO

High-throughput sequencing (HTS) has become a powerful tool for the detection of and sequence characterization of microRNAs (miRNA) and other small RNAs (sRNA). Unfortunately, the use of HTS data to determine the relative quantity of different miRNAs in a sample has been shown to be inconsistent with quantitative PCR and Northern Blot results. Several recent studies have concluded that the major contributor to this inconsistency is bias introduced during the construction of sRNA libraries for HTS and that the bias is primarily derived from the adaptor ligation steps, specifically where single stranded adaptors are sequentially ligated to the 3' and 5'-end of sRNAs using T4 RNA ligases. In this study we investigated the effects of ligation bias by using a pool of randomized ligation substrates, defined mixtures of miRNA sequences and several combinations of adaptors in HTS library construction. We show that like the 3' adaptor ligation step, the 5' adaptor ligation is also biased, not because of primary sequence, but instead due to secondary structures of the two ligation substrates. We find that multiple secondary structural factors influence final representation in HTS results. Our results provide insight about the nature of ligation bias and allowed us to design adaptors that reduce ligation bias and produce HTS results that more accurately reflect the actual concentrations of miRNAs in the defined starting material.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA/estatística & dados numéricos , Animais , Biologia Computacional , Biblioteca Genômica , Humanos , Camundongos , MicroRNAs/química , MicroRNAs/genética , Conformação de Ácido Nucleico , RNA Ligase (ATP) , Ratos , Viés de Seleção , Proteínas Virais
17.
J Microsc ; 259(3): 210-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25946127

RESUMO

We have studied the wavelength dependence of the two-photon excitation efficiency for a number of common UV excitable fluorescent dyes; the nuclear stains DAPI, Hoechst and SYTOX Green, chitin- and cellulose-staining dye Calcofluor White and Alexa Fluor 350, in the visible and near-infrared wavelength range (540-800 nm). For several of the dyes, we observe a substantial increase in the fluorescence emission intensity for shorter excitation wavelengths than the 680 nm which is the shortest wavelength usually available for two-photon microscopy. We also find that although the rate of photo-bleaching increases at shorter wavelengths, it is still possible to acquire many images with higher fluorescence intensity. This is particularly useful for applications where the aim is to image the structure, rather than monitoring changes in emission intensity over extended periods of time. We measure the excitation spectrum when the dyes are used to stain biological specimens to get a more accurate representation of the spectrum of the dye in a cell environment as compared to solution-based measurements.


Assuntos
Microscopia de Fluorescência/métodos , Fótons , Óxido de Alumínio , Benzenossulfonatos/química , Fluorescência , Corantes Fluorescentes , Indóis/química , Lasers , Compostos Orgânicos/química , Espectrometria de Fluorescência , Coloração e Rotulagem
18.
Phys Rev Lett ; 114(17): 173903, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978236

RESUMO

Theoretical analysis of the optomechanics of degenerate bosonic atoms with a single feedback mirror shows that self-structuring occurs only above an input threshold that is quantum mechanical in origin. This threshold also implies a lower limit to the size (period) of patterns that can be produced in a condensate for a given pump intensity. These thresholds are interpreted as due to the quantum rigidity of Bose-Einstein condensates, which has no classical counterpart. Above the threshold, the condensate self-organizes into an ordered supersolid state with a spatial period self-selected by optical diffraction.

19.
Acta Trop ; 147: 1-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25820031

RESUMO

The majority of human pathogens are zoonotic and rodents play an important role as reservoirs of many of these infectious agents. In the case of vector-borne pathogens, rodent reservoirs not only act as a source of infection for vectors but also serve as hosts for the vectors themselves, supporting their populations. Current data on rodent-ectoparasite relationships is limited in Saudi Arabia, however, this is needed to assess disease risk and the relative importance of different hosts for the maintenance of vector-borne pathogen cycles. In order to provide baseline data for the region that could be used to assess zoonotic disease risk, we collected and identified 771 ectoparasite specimens (ticks, fleas and mites) from 161 rodents at two wildlife research centres in Saudi Arabia and discuss our results in the context of possible zoonotic disease risk based on the hosts and vectors present.


Assuntos
Animais Selvagens/parasitologia , Ectoparasitoses/veterinária , Roedores/parasitologia , Zoonoses/transmissão , Animais , Reservatórios de Doenças/parasitologia , Vetores de Doenças , Ectoparasitoses/epidemiologia , Humanos , Ácaros , Arábia Saudita , Sifonápteros , Carrapatos
20.
Philos Trans A Math Phys Eng Sci ; 372(2027)2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25246676

RESUMO

We study non-equilibrium spatial self-organization in cold atomic gases, where long-range spatial order spontaneously emerges from fluctuations in the plane transverse to the propagation axis of a single optical beam. The self-organization process can be interpreted as a synchronization transition in a fully connected network of fictitious oscillators, and described in terms of the Kuramoto model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...