Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902379

RESUMO

Digital stress is a newly identified cosmetic stress that is mainly characterized by blue light exposure. The effects of this stress have become increasingly important with the emergence of personal digital devices, and its deleterious effects on the body are now well-known. Blue light has been observed to cause perturbation of the natural melatonin cycle and skin damage similar to that from UVA exposure, thus leading to premature aging. "A melatonin-like ingredient" was discovered in the extract of Gardenia jasminoides, which acts as a filter against blue light and as a melatonin-like ingredient to prevent and stop premature aging. The extract showed significant protective effects on the mitochondrial network of primary fibroblasts, a significant decrease of -86% in oxidized proteins on skin explants, and preservation of the natural melatonin cycle in the co-cultures of sensory neurons and keratinocytes. Upon analysis using in silico methods, only the crocetin form, released through skin microbiota activation, was found to act as a melatonin-like molecule by interacting with the MT1-receptor, thus confirming its melatonin-like properties. Finally, clinical studies revealed a significant decrease in wrinkle number of -21% in comparison to the placebo. The extract showed strong protection against blue light damage and the prevention of premature aging through its melatonin-like properties.


Assuntos
Senilidade Prematura , Gardenia , Melatonina , Senilidade Prematura/metabolismo , Melatonina/farmacologia , Pele/metabolismo
2.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897945

RESUMO

(1) Background: Preclinical studies report that the ethanolic fraction from Mangifera indica leaves is a potential anti-acne agent. Nevertheless, the biological activity of Mangifera indica leaves has scarcely been investigated, and additional data are needed, especially in a clinical setting, for establishing the actual effectiveness of Mangifera indica extract as an active component of anti-acne therapy. (2) Methods: The evaluation of the biological activity of Mangifera indica extract was carried out through different experimental phases, which comprised in silico, in vitro, ex vivo and clinical evaluations. (3) Results: In silico and in vitro studies allowed us to identify the phytomarkers carrying the activity of seboregulation and acne management. Results showed that Mangifera indica extract reduced lipid production by 40% in sebocytes, and an improvement of the sebum quality was reported after the treatment in analyses performed on sebaceous glands from skin explants. The evaluation of the sebum quantity and quality using triglyceride/free fatty acid analysis conducted on Caucasian volunteers evidenced a strong improvement and a reduction of porphyrins expression. The C. acnes lipase activity from a severe acne phylotype was evaluated in the presence of Mangifera indica, and a reduction by 29% was reported. In addition, the analysis of the skin microbiota documented that Mangifera indica protected the microbiota equilibrium while the placebo induced dysbiosis. (4) Conclusions: Our results showed that Mangifera indica is microbiota friendly and efficient against lipase activity of C. acnes and supports a role for Mangifera indica in the therapeutic strategy for prevention and treatment of acne.


Assuntos
Acne Vulgar , Mangifera , Acne Vulgar/tratamento farmacológico , Acne Vulgar/metabolismo , Humanos , Lipase/metabolismo , Extratos Vegetais/uso terapêutico , Propionibacterium acnes , Sebo
3.
Health Sci Rep ; 5(3): e609, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35425869

RESUMO

Background and Aims: Dark spots, brown spots, or hyperpigmented spots (HPS) are oval or irregular brown areas of skin. Their emergence is associated with dysregulation of the immune system, and may also be caused by a deficiency in stromal cell-derived factor-1, leading to perturbed melanogenesis and accumulation of melanosomes within neighboring keratinocytes. The skin microbiota (living microorganisms present on the surface of the skin) is known to play essential roles in maintaining skin homeostasis and in regulating the immune system. Here, we investigated whether the microbiota could play a role in the emergence of HPS. Methods: The clinical study involved 38 European women, selected from among 74 volunteers. Participants were divided into two groups depending on the spot areas measured on their faces. The study was designed to avoid conflicting factors: both groups presented similar skin pH, hydration, transepidermal water loss, and sebum levels. The two cohorts were also age-matched, with a mean of 29-years-old for both. Results: Alpha-diversity of the microbiota was similar for the two groups. On skins with more HPS, seven bacterial genera were identified in significantly higher proportions and included opportunistic pathogens and inflammatory bacteria. Six bacterial genera, including bacteria showing antioxidant and anti-UV properties, were identified in significantly higher proportions on less spotted skins. Cross-domain association networks revealed distinct co-occurrences of genera between the two groups, suggesting nonidentical community structures and exchanges, depending on the HPS status. Conclusion: Our results reveal specific microbiota composition and networks on skins based on HPS status. Changes could alter communication with the immune system, leading to the emergence of dark spots. As an essential part of the overall skin ecosystem, and through its interaction with the skin matrix, the skin microbiota and its maintenance could be considered a new target for skincare applications.

4.
Front Microbiol ; 10: 1286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275257

RESUMO

The human Intestinal mucus is formed by glycoproteins, the O- and N-linked glycans which constitute a crucial source of carbon for commensal gut bacteria, especially when deprived of dietary glycans of plant origin. In recent years, a dozen carbohydrate-active enzymes from cultivated mucin degraders have been characterized. But yet, considering the fact that uncultured species predominate in the human gut microbiota, these biochemical data are far from exhaustive. In this study, we used functional metagenomics to identify new metabolic pathways in uncultured bacteria involved in harvesting mucin glycans. First, we performed a high-throughput screening of a fosmid metagenomic library constructed from the ileum mucosa microbiota using chromogenic substrates. The screening resulted in the isolation of 124 clones producing activities crucial in the degradation of human O- and N-glycans, namely sialidases, ß-D-N-acetyl-glucosaminidase, ß-D-N-acetyl-galactosaminidase, and/or ß-D-mannosidase. Thirteen of these clones were selected based on their diversified functional profiles and were further analyzed on a secondary screening. This step consisted of lectin binding assays to demonstrate the ability of the clones to degrade human intestinal mucus. In total, the structural modification of several mucin motifs, sialylated mucin ones in particular, was evidenced for nine clones. Sequencing their metagenomic loci highlighted complex catabolic pathways involving the complementary functions of glycan sensing, transport, hydrolysis, deacetylation, and deamination, which were sometimes associated with amino acid metabolism machinery. These loci are assigned to several Bacteroides and Feacalibacterium species highly prevalent and abundant in the gut microbiome and explain the metabolic flexibility of gut bacteria feeding both on dietary and human glycans.

5.
J Cosmet Dermatol ; 18(4): 1140-1154, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30485658

RESUMO

BACKGROUND: Healthy skin is a delicate balance between skin renewal and microbiota homeostasis, and its imbalance promotes premature aging and dermatological disorders. Skin stem cells are key actors in this process but their sensitivity to aging and external stressors such as UV reduces the skin renewal power. The skin microbiota has been recently described as active in the healthy skin, and its imbalance could trigger some disorders. AIMS: We hypothesized that reactivation of stem cells and maintenance of microbiota could be a disruptive strategy for younger and healthier skin. We thus developed a new plant extract that restores the entire skin renewal process by sequential activation from stem cells stimulation to microbiota protection. METHODS: We studied stem cells comportment in the presence of Orobanche rapum extract by survivin immunocytochemistry and caspases 3 and 9 dosages. We also analyzed epidermal differentiation markers by immunohistochemistry and lipids organization by GC/MS At the clinical level, we investigated the impact of O. rapum extract on microbiota and on skin aspect. RESULTS: We demonstrated an active protection of skin stem cells through the maintenance of their clone-forming capacity and resistance to UV through the overexpression of survivin coupled to caspases inhibition. Furthermore, we showed the restoration of epidermal differentiation markers and ceramide biosynthesis favorable to orthorhombic organization. Clinical studies, including microbiota analysis, showed an active skin surface renewal coupled with microbiota protection. CONCLUSION: We evidenced that our active ingredient is able to stimulate skin rejuvenation while protecting the cutaneous microbiota, creating healthier skin and thereby beauty.


Assuntos
Orobanche/química , Extratos Vegetais/administração & dosagem , Envelhecimento da Pele/efeitos dos fármacos , Administração Cutânea , Adolescente , Adulto , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Método Duplo-Cego , Células Epidérmicas , Feminino , Folículo Piloso/citologia , Humanos , Microbiota/efeitos dos fármacos , Pessoa de Meia-Idade , Placebos/administração & dosagem , Extratos Vegetais/isolamento & purificação , Cultura Primária de Células , Rejuvenescimento , Pele/citologia , Pele/microbiologia , Creme para a Pele/administração & dosagem , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Resultado do Tratamento , Adulto Jovem
6.
Front Microbiol ; 9: 861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780372

RESUMO

The bovine rumen hosts a diverse microbiota, which is highly specialized in the degradation of lignocellulose. Ruminal bacteria, in particular, are well equipped to deconstruct plant cell wall polysaccharides. Nevertheless, their potential role in the breakdown of the lignin network has never been investigated. In this study, we used functional metagenomics to identify bacterial redox enzymes acting on polyaromatic compounds. A new methodology was developed to explore the potential of uncultured microbes to degrade lignin derivatives, namely kraft lignin and lignosulfonate. From a fosmid library covering 0.7 Gb of metagenomic DNA, three hit clones were identified, producing enzymes able to oxidize a wide variety of polyaromatic compounds without the need for the addition of copper, manganese, or mediators. These promiscuous redox enzymes could thus be of potential interest both in plant biomass refining and dye remediation. The enzymes were derived from uncultured Clostridia, and belong to complex gene clusters involving proteins of different functional types, including hemicellulases, which likely work in synergy to produce substrate degradation.

7.
PLoS One ; 12(12): e0189201, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29240834

RESUMO

Bioremediation of pollutants is a major concern worldwide, leading to the research of new processes to break down and recycle xenobiotics and environment contaminating polymers. Among them, carbamates have a very broad spectrum of uses, such as toxinogenic pesticides or elastomers. In this study, we mined the bovine rumen microbiome for carbamate degrading enzymes. We isolated 26 hit clones exhibiting esterase activity, and were able to degrade at least one of the targeted polyurethane and pesticide carbamate compounds. The most active clone was deeply characterized. In addition to Impranil, this clone was active on Tween 20, pNP-acetate, butyrate and palmitate, and on the insecticide fenobucarb. Sequencing and sub-cloning of the best target revealed a novel carboxyl-ester hydrolase belonging to the lipolytic family IV, named CE_Ubrb. This study highlights the potential of highly diverse microbiota such as the ruminal one for the discovery of promiscuous enzymes, whose versatility could be exploited for industrial uses.


Assuntos
Carbamatos/metabolismo , Metagenômica , Animais , Bovinos
8.
Forensic Sci Int Genet ; 26: 21-29, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27750077

RESUMO

The ubiquity and transferability of soil makes it a resource for the forensic investigator, as it can provide a link between agents and scenes. However, the information contained in soils, such as chemical compounds, physical particles or biological entities, is seldom used in forensic investigations; due mainly to the associated costs, lack of available expertise, and the lack of soil databases. The microbial DNA in soil is relatively easy to access and analyse, having thus the potential to provide a powerful means for discriminating soil samples or linking them to a common origin. We compared the effectiveness and reliability of multiple methods and genes for bacterial characterisation in the differentiation of soil samples: ribosomal intergenic spacer analysis (RISA), terminal restriction fragment length polymorphism (TRFLP) of the rpoB gene, and five methods using the 16S rRNA gene: phylogenetic microarrays, TRFLP, and high throughput sequencing with Roche 454, Illumina MiSeq and IonTorrent PGM platforms. All these methods were also compared to long-chain hydrocarbons (n-alkanes) and fatty alcohol profiling of the same soil samples. RISA, 16S TRFLP and MiSeq performed best, reliably and significantly discriminating between adjacent, similar soil types. As TRFLP employs the same capillary electrophoresis equipment and procedures used to analyse human DNA, it is readily available for use in most forensic laboratories. TRFLP was optimized for forensic usage in five parameters: choice of primer pair, fluorescent tagging, concentrating DNA after digestion, number of PCR amplifications per sample and number of capillary electrophoresis runs per PCR amplification. This study shows that molecular microbial ecology methodologies are robust in discriminating between soil samples, illustrating their potential usage as an evaluative forensic tool.


Assuntos
Microbiota , Microbiologia do Solo , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Genética Forense , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Análise em Microsséries , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
9.
PLoS One ; 8(9): e72766, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066026

RESUMO

The human intestine hosts a complex bacterial community that plays a major role in nutrition and in maintaining human health. A functional metagenomic approach was used to explore the prebiotic breakdown potential of human gut bacteria, including non-cultivated ones. Two metagenomic libraries, constructed from ileum mucosa and fecal microbiota, were screened for hydrolytic activities on the prebiotic carbohydrates inulin, fructo-oligosaccharides, xylo-oligosaccharides, galacto-oligosaccharides and lactulose. The DNA inserts of 17 clones, selected from the 167 hits that were identified, were pyrosequenced in-depth, yielding in total 407, 420 bp of metagenomic DNA. From these sequences, we discovered novel prebiotic degradation pathways containing carbohydrate transporters and hydrolysing enzymes, for which we provided the first experimental proof of function. Twenty of these proteins are encoded by genes that are also present in the gut metagenome of at least 100 subjects, whatever are their ages or their geographical origin. The sequence taxonomic assignment indicated that still unknown bacteria, for which neither culture conditions nor genome sequence are available, possess the enzymatic machinery to hydrolyse the prebiotic carbohydrates tested. The results expand the vision on how prebiotics are metabolized along the intestine, and open new perspectives for the design of functional foods.


Assuntos
Bactérias/metabolismo , Trato Gastrointestinal/microbiologia , Metagenômica/métodos , Prebióticos/microbiologia , Escherichia coli/metabolismo , Humanos , Dados de Sequência Molecular
10.
PLoS One ; 8(6): e65288, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776466

RESUMO

The human skin microbiome could provide another example, after the gut, of the strong positive or negative impact that human colonizing bacteria can have on health. Deciphering functional diversity and dynamics within human skin microbial communities is critical for understanding their involvement and for developing the appropriate substances for improving or correcting their action. We present a direct PCR-free high throughput sequencing approach to unravel the human skin microbiota specificities through metagenomic dataset analysis and inter-environmental comparison. The approach provided access to the functions carried out by dominant skin colonizing taxa, including Corynebacterium, Staphylococcus and Propionibacterium, revealing their specific capabilities to interact with and exploit compounds from the human skin. These functions, which clearly illustrate the unique life style of the skin microbial communities, stand as invaluable investigation targets for understanding and potentially modifying bacterial interactions with the human host with the objective of increasing health and well being.


Assuntos
Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Microbiota/genética , Pele/microbiologia , Adulto , Sequência de Bases , Humanos , Masculino , Anotação de Sequência Molecular , Dados de Sequência Molecular , Análise de Componente Principal
11.
Biotechnol Biofuels ; 6(1): 78, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23672637

RESUMO

BACKGROUND: The metagenomic analysis of gut microbiomes has emerged as a powerful strategy for the identification of biomass-degrading enzymes, which will be no doubt useful for the development of advanced biorefining processes. In the present study, we have performed a functional metagenomic analysis on comb and gut microbiomes associated with the fungus-growing termite, Pseudacanthotermes militaris. RESULTS: Using whole termite abdomens and fungal-comb material respectively, two fosmid-based metagenomic libraries were created and screened for the presence of xylan-degrading enzymes. This revealed 101 positive clones, corresponding to an extremely high global hit rate of 0.49%. Many clones displayed either ß-d-xylosidase (EC 3.2.1.37) or α-l-arabinofuranosidase (EC 3.2.1.55) activity, while others displayed the ability to degrade AZCL-xylan or AZCL-ß-(1,3)-ß-(1,4)-glucan. Using secondary screening it was possible to pinpoint clones of interest that were used to prepare fosmid DNA. Sequencing of fosmid DNA generated 1.46 Mbp of sequence data, and bioinformatics analysis revealed 63 sequences encoding putative carbohydrate-active enzymes, with many of these forming parts of sequence clusters, probably having carbohydrate degradation and metabolic functions. Taxonomic assignment of the different sequences revealed that Firmicutes and Bacteroidetes were predominant phyla in the gut sample, while microbial diversity in the comb sample resembled that of typical soil samples. Cloning and expression in E. coli of six enzyme candidates identified in the libraries provided access to individual enzyme activities, which all proved to be coherent with the primary and secondary functional screens. CONCLUSIONS: This study shows that the gut microbiome of P. militaris possesses the potential to degrade biomass components, such as arabinoxylans and arabinans. Moreover, the data presented suggests that prokaryotic microorganisms present in the comb could also play a part in the degradation of biomass within the termite mound, although further investigation will be needed to clarify the complex synergies that might exist between the different microbiomes that constitute the termitosphere of fungus-growing termites. This study exemplifies the power of functional metagenomics for the discovery of biomass-active enzymes and has provided a collection of potentially interesting biocatalysts for further study.

12.
ISME J ; 6(9): 1677-87, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22297556

RESUMO

The soil ecosystem is critical for human health, affecting aspects of the environment from key agricultural and edaphic parameters to critical influence on climate change. Soil has more unknown biodiversity than any other ecosystem. We have applied diverse DNA extraction methods coupled with high throughput pyrosequencing to explore 4.88 × 10(9) bp of metagenomic sequence data from the longest continually studied soil environment (Park Grass experiment at Rothamsted Research in the UK). Results emphasize important DNA extraction biases and unexpectedly low seasonal and vertical soil metagenomic functional class variations. Clustering-based subsystems and carbohydrate metabolism had the largest quantity of annotated reads assigned although <50% of reads were assigned at an E value cutoff of 10(-5). In addition, with the more detailed subsystems, cAMP signaling in bacteria (3.24±0.27% of the annotated reads) and the Ton and Tol transport systems (1.69±0.11%) were relatively highly represented. The most highly represented genome from the database was that for a Bradyrhizobium species. The metagenomic variance created by integrating natural and methodological fluctuations represents a global picture of the Rothamsted soil metagenome that can be used for specific questions and future inter-environmental metagenomic comparisons. However, only 1% of annotated sequences correspond to already sequenced genomes at 96% similarity and E values of <10(-5), thus, considerable genomic reconstructions efforts still have to be performed.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Metagenoma , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Mudança Climática , Análise por Conglomerados , Metagenômica , Análise de Sequência de DNA
13.
J Microbiol Methods ; 86(3): 397-400, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21723887

RESUMO

Full pyrosequencing runs of both direct-extracted (high yield, low DNA size) and indirect-extracted DNA (low yield, high DNA size) from the same prairie soil show that the sequence distribution of the majority of the metabolic functions and species detected were statistically similar. Although some microbial functions differed at the 95% confidence interval in bootstrap analyses, the overall functional diversity was the same.


Assuntos
DNA/análise , DNA/genética , Metagenômica/métodos , Solo/análise , Genoma , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Microbiologia do Solo
14.
Appl Environ Microbiol ; 77(4): 1315-24, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21183646

RESUMO

Soil microbial communities contain the highest level of prokaryotic diversity of any environment, and metagenomic approaches involving the extraction of DNA from soil can improve our access to these communities. Most analyses of soil biodiversity and function assume that the DNA extracted represents the microbial community in the soil, but subsequent interpretations are limited by the DNA recovered from the soil. Unfortunately, extraction methods do not provide a uniform and unbiased subsample of metagenomic DNA, and as a consequence, accurate species distributions cannot be determined. Moreover, any bias will propagate errors in estimations of overall microbial diversity and may exclude some microbial classes from study and exploitation. To improve metagenomic approaches, investigate DNA extraction biases, and provide tools for assessing the relative abundances of different groups, we explored the biodiversity of the accessible community DNA by fractioning the metagenomic DNA as a function of (i) vertical soil sampling, (ii) density gradients (cell separation), (iii) cell lysis stringency, and (iv) DNA fragment size distribution. Each fraction had a unique genetic diversity, with different predominant and rare species (based on ribosomal intergenic spacer analysis [RISA] fingerprinting and phylochips). All fractions contributed to the number of bacterial groups uncovered in the metagenome, thus increasing the DNA pool for further applications. Indeed, we were able to access a more genetically diverse proportion of the metagenome (a gain of more than 80% compared to the best single extraction method), limit the predominance of a few genomes, and increase the species richness per sequencing effort. This work stresses the difference between extracted DNA pools and the currently inaccessible complete soil metagenome.


Assuntos
Bactérias , DNA/análise , Metagenoma , Consórcios Microbianos/genética , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA/genética , DNA/isolamento & purificação , Impressões Digitais de DNA , DNA Bacteriano/análise , DNA Bacteriano/genética , Ecossistema , Filogenia , RNA Ribossômico 16S/genética
15.
Genome Res ; 20(11): 1605-12, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20841432

RESUMO

The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes involved in dietary fiber breakdown. High-throughput functional screens were first applied to a library covering 5.4 × 10(9) bp of metagenomic DNA, allowing the isolation of 310 clones showing beta-glucanase, hemicellulase, galactanase, amylase, or pectinase activities. Based on the results of refined secondary screens, sequencing efforts were reduced to 0.84 Mb of nonredundant metagenomic DNA, corresponding to 26 clones that were particularly efficient for the degradation of raw plant polysaccharides. Seventy-three CAZymes from 35 different families were discovered. This corresponds to a fivefold target-gene enrichment compared to random sequencing of the human gut metagenome. Thirty-three of these CAZy encoding genes are highly homologous to prevalent genes found in the gut microbiome of at least 20 individuals for whose metagenomic data are available. Moreover, 18 multigenic clusters encoding complementary enzyme activities for plant cell wall degradation were also identified. Gene taxonomic assignment is consistent with horizontal gene transfer events in dominant gut species and provides new insights into the human gut functional trophic chain.


Assuntos
Mineração de Dados/métodos , Fibras na Dieta/metabolismo , Enzimas/genética , Intestinos/microbiologia , Metagenoma/genética , Metagenômica/métodos , Adulto , Algoritmos , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Enzimas/análise , Enzimas/isolamento & purificação , Enzimas/metabolismo , Humanos , Masculino , Metabolismo/genética , Metagenoma/fisiologia , Dados de Sequência Molecular , Análise de Sequência de DNA
16.
Res Microbiol ; 159(3): 153-61, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18375103

RESUMO

The drug discovery process is a starving machine requiring constant feeding with new chemical compounds. Synthetic or natural scaffolds: what are the best sources? While synthetic molecules are rapidly generated by combinatorial chemistry, they show lower chemical diversity than their natural counterparts. A significant fraction of known natural products is issued from microbial secondary metabolism; however, more than 95% of bacterial organisms remain unexploited as a source of active chemical compounds due to their cultivation difficulties. Recent technological advances in metagenomics have provided reliable access to chemicals of these hidden bugs, thus opening up new opportunities for feeding the machine.


Assuntos
Bactérias/metabolismo , Fatores Biológicos/isolamento & purificação , Fatores Biológicos/farmacologia , DNA Bacteriano/genética , Avaliação Pré-Clínica de Medicamentos , Bactérias/classificação , Bactérias/genética , Fatores Biológicos/genética , Fatores Biológicos/metabolismo , DNA Bacteriano/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Biblioteca Genômica , Filogenia , Microbiologia do Solo
17.
J Mol Evol ; 60(6): 716-25, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15909225

RESUMO

Type I polyketide synthases (PKSI) are modular multidomain enzymes involved in the biosynthesis of many natural products of industrial interest. PKSI modules are minimally organized in three domains: ketosynthase (KS), acyltransferase (AT), and acyl carrier protein. The KS domain phylogeny of 23 PKSI clusters was determined. The results obtained suggest that many horizontal transfers of PKSI genes have occurred between actinomycetales species. Such gene transfers may explain the homogeneity and the robustness of the actinomycetales group since gene transfers between closely related species could mimic patterns generated by vertical inheritance. We suggest that the linearity and instability of actinomycetales chromosomes associated with their large quantity of genetic mobile elements have favored such horizontal gene transfers.


Assuntos
Evolução Molecular , Técnicas de Transferência de Genes , Transferência Genética Horizontal , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Aciltransferases/genética , Anfotericina B/farmacologia , Proteínas de Bactérias/metabolismo , Genes Bacterianos , Macrolídeos/farmacologia , Modelos Genéticos , Família Multigênica , Natamicina/farmacologia , Nistatina/farmacologia , Filogenia , Estrutura Terciária de Proteína
18.
FEMS Microbiol Lett ; 244(1): 157-63, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15727835

RESUMO

The physical organization of phytobeneficial genes was investigated in the plant growth-promoting rhizobacterium Azospirillum lipoferum 4VI by hybridization screening of a bacterial artificial chromosome (BAC) library. Pulsed-field gel electrophoresis gave an estimated 5.7-Mb genome size for strain 4VI and a coverage level of 9 for the BAC library. The phytobeneficial genes nifH (associative nitrogen fixation) and ipdC (synthesis of the phytohormone indoleacetic acid) are chromosomal, but no BAC clone containing both genes was found, pointing to the absence of any genetic island containing nifH and ipdC. A 11.8-kb fragment containing nifH was analyzed. Neighboring genes implicated in nitrogen fixation (nifH, draT, draG) or not (arsC, yafJ and acpD) were organized as in A. brasilense. In contrast, the region located downstream of acpD contained four housekeeping genes (i.e. genes encoding DapF-, MiaB- and FtsY-like proteins, as well as gene amn) and differed totally from the one found in A. brasilense.


Assuntos
Azospirillum lipoferum/genética , Genes Bacterianos , Plantas/microbiologia , Azospirillum lipoferum/metabolismo , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , DNA Bacteriano/genética , Biblioteca Gênica , Genoma Bacteriano , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Oxirredutases/genética , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Replicon
19.
Appl Environ Microbiol ; 70(9): 5522-7, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15345440

RESUMO

The metagenomic approach provides direct access to diverse unexplored genomes, especially from uncultivated bacteria in a given environment. This diversity can conceal many new biosynthetic pathways. Type I polyketide synthases (PKSI) are modular enzymes involved in the biosynthesis of many natural products of industrial interest. Among the PKSI domains, the ketosynthase domain (KS) was used to screen a large soil metagenomic library containing more than 100,000 clones to detect those containing PKS genes. Over 60,000 clones were screened, and 139 clones containing KS domains were detected. A 700-bp fragment of the KS domain was sequenced for 40 of 139 randomly chosen clones. None of the 40 protein sequences were identical to those found in public databases, and nucleic sequences were not redundant. Phylogenetic analyses were performed on the protein sequences of three metagenomic clones to select the clones which one can predict to produce new compounds. Two PKS-positive clones do not belong to any of the 23 published PKSI included in the analysis, encouraging further analyses on these two clones identified by the selection process.


Assuntos
Biblioteca Gênica , Microbiologia do Solo , Sequência de Aminoácidos , Clonagem Molecular , Sequência Conservada , Cinética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...