Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 16(8): 20050-66, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26305247

RESUMO

The use of biocidal compounds in polymers is steadily increasing because it is one solution to the need for safety and hygiene. It is possible to incorporate an antimicrobial moiety to a polymer. These polymers are referred to as intrinsic antimicrobial. The biocidal action results from contact of the polymer to the microorganisms, with no release of active molecules. This is particularly important in critical fields like food technology, medicine and ventilation technology, where migration or leaching is crucial and undesirable. The isomers N-(1,1-dimethylethyl)-4-ethenyl-benzenamine and N-(1,1-dimethyl-ethyl)-3-ethenyl-benzenamine (TBAMS) are novel (Co-)Monomers for intrinsic anti-microbial polymers. The secondary amines were prepared and polymerized to the corresponding water insoluble polymer. The antimicrobial activity was analyzed by the test method JIS Z 2801:2000. Investigations revealed a high antimicrobial activity against Staphylococcus aureus and Escherichia coli with a reduction level of >4.5 log10 units. Furthermore, scanning electron microscopy (SEM) of E. coli. in contact with the polymer indicates a bactericidal action which is caused by disruption of the bacteria cell membranes, leading to lysis of the cells.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Polímeros/química , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...