Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(8): 3942-3952, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350647

RESUMO

Aqueous film-forming foams (AFFFs) are used in firefighting applications and often contain per- and polyfluoroalkyl substances (PFAS), which can detrimentally impact environmental and biological health. Incineration is a potential disposal method for AFFFs, which may produce secondary PFAS and other air pollutants. We used online chemical ionization mass spectrometry (CIMS) to measure volatile PFAS emissions from incinerating AFFF concentrate solutions. We quantified perfluorinated carboxylic acids (PFCAs) during the incineration of legacy and contemporary AFFFs. These included trifluoroacetic acid, which reached mg m-3 quantities in the incinerator exhaust. These PFCAs likely arose as products of incomplete combustion of AFFF fluorosurfactants with lower peak furnace temperatures yielding higher PFCA concentrations. We also detected other short-chain PFAS, and other novel chemical products in AFFF combustion emissions. The volatile headspace above AFFF solutions contained larger (C ≥ 8), less oxidized PFAS detected by CIMS. We identified neutral PFAS resembling fluorotelomer surfactants (e.g., fluorotelomer sulfonamide alkylbetaines and fluorotelomer thioether amido sulfonates) and fluorotelomer alcohols in contemporary AFFF headspaces. Directly comparing the distinct chemical spaces of AFFF volatile headspace and combustion byproducts as measured by CIMS provides insight toward the chemistry of PFAS during thermal treatment of AFFFs.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Tensoativos/análise , Água , Fluorocarbonos/análise , Ácidos Carboxílicos/análise , Espectrometria de Massas
2.
ACS ES T Eng ; 3(9): 1308-1317, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38989445

RESUMO

The destruction of per- and polyfluoroalkyl substances (PFAS) is critical to ensure effective remediation of PFAS contaminated matrices. The destruction of hazardous chemicals within incinerators and other thermal treatment processes has historically been determined by calculating the destruction efficiency (DE) or the destruction and removal efficiency (DRE). While high DEs, >99.99%, are deemed acceptable for most hazardous compounds, many PFAS can be converted to other PFAS at low temperatures resulting in high DEs without full mineralization and the potential release of the remaining fluorocarbon portions to the environment. Many of these products of incomplete combustion (PICs) are greenhouse gases, most have unknown toxicity, and some can react to create new perfluorocarboxylic acids. Experiments using aqueous film forming foam (AFFF) and a pilot-scale research combustor varied the combustion environment to determine if DEs indicate PFAS mineralization. Several operating conditions above 1090 °C resulted in high DEs and few detectable fluorinated PIC emissions. However, several conditions below 1000 °C produced DEs >99.99% for the quantifiable PFAS and mg/m3 emission concentrations of several non-polar PFAS PICs. These results suggest that DE alone may not be the best indication of total PFAS destruction, and additional PIC characterization may be warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...