Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38096484

RESUMO

Plant breeding and genetics play a major role in the adaptation of plants to meet human needs. The current requirement to make agriculture more sustainable can be partly met by a greater reliance on biological nitrogen fixation by symbiotic diazotrophic microorganisms that provide crop plants with ammonium. Select accessions of the cereal crop sorghum (Sorghum bicolor (L.) Moench) form mucilage-producing aerial roots that harbor nitrogen-fixing bacteria. Breeding programs aimed at developing sorghum varieties that support diazotrophs will benefit from a detailed understanding of the genetic and environmental factors contributing to aerial root formation. A genome-wide association study of the sorghum minicore, a collection of 242 landraces, and 30 accessions from the sorghum association panel was conducted in Florida and Wisconsin and under 2 fertilizer treatments to identify loci associated with the number of nodes with aerial roots and aerial root diameter. Sequence variation in genes encoding transcription factors that control phytohormone signaling and root system architecture showed significant associations with these traits. In addition, the location had a significant effect on the phenotypes. Concurrently, we developed F2 populations from crosses between bioenergy sorghums and a landrace that produced extensive aerial roots to evaluate the mode of inheritance of the loci identified by the genome-wide association study. Furthermore, the mucilage collected from aerial roots contained polysaccharides rich in galactose, arabinose, and fucose, whose composition displayed minimal variation among 10 genotypes and 2 fertilizer treatments. These combined results support the development of sorghums with the ability to acquire nitrogen via biological nitrogen fixation.


Assuntos
Sorghum , Humanos , Sorghum/genética , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Fixação de Nitrogênio/genética , Fertilizantes , Melhoramento Vegetal , Fenótipo
2.
Curr Biol ; 32(9): 1883-1894.e7, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35320706

RESUMO

Wound healing is a fundamental property of plants and animals that requires recognition of cellular damage to initiate regeneration. In plants, wounding activates a defense response via the production of jasmonic acid and a regeneration response via the hormone auxin and several ethylene response factor (ERF) and NAC domain-containing protein (ANAC) transcription factors. To better understand how plants recognize damage and initiate healing, we searched for factors upregulated during the horticulturally relevant process of plant grafting and found four related DNA binding with one finger (DOF) transcription factors, HIGH CAMBIAL ACTIVITY2 (HCA2), TARGET OF MONOPTEROS6 (TMO6), DOF2.1, and DOF6, whose expression rapidly activated at the Arabidopsis graft junction. Grafting or wounding a quadruple hca2, tmo6, dof2.1, dof6 mutant inhibited vascular and cell-wall-related gene expression. Furthermore, the quadruple dof mutant reduced callus formation, tissue attachment, vascular regeneration, and pectin methylesterification in response to wounding. We also found that activation of DOF gene expression after wounding required auxin, but hormone treatment alone was insufficient for their induction. However, modifying cell walls by enzymatic digestion of cellulose or pectin greatly enhanced TMO6 and HCA2 expression, whereas genetic modifications to the pectin or cellulose matrix using the PECTIN METHYLESTERASE INHIBITOR5 overexpression line or korrigan1 mutant altered TMO6 and HCA2 expression. Changes to the cellulose or pectin matrix were also sufficient to activate the wound-associated ERF115 and ANAC096 transcription factors, suggesting that cell-wall damage represents a common mechanism for wound perception and the promotion of tissue regeneration.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cicatrização
3.
Biotechnol Biofuels ; 14(1): 140, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147122

RESUMO

BACKGROUND: The carbohydrate polymers that encapsulate plants cells have benefited humans for centuries and have valuable biotechnological uses. In the past 5 years, exciting possibilities have emerged in the engineering of polysaccharide-based biomaterials. Despite impressive advances on bacterial cellulose-based hydrogels, comparatively little is known about how plant hemicelluloses can be reconstituted and modulated in cells suitable for biotechnological purposes. RESULTS: Here, we assembled cellulose synthase-like A (CSLA) enzymes using an optimized Pichia pastoris platform to produce tunable heteromannan (HM) polysaccharides in yeast. By swapping the domains of plant mannan and glucomannan synthases, we engineered chimeric CSLA proteins that made ß-1,4-linked mannan in quantities surpassing those of the native enzymes while minimizing the burden on yeast growth. Prolonged expression of a glucomannan synthase from Amorphophallus konjac was toxic to yeast cells: reducing biomass accumulation and ultimately leading to compromised cell viability. However, an engineered glucomannan synthase as well as CSLA pure mannan synthases and a CSLC glucan synthase did not inhibit growth. Interestingly, Pichia cell size could be increased or decreased depending on the composition of the CSLA protein sequence. HM yield and glucose incorporation could be further increased by co-expressing chimeric CSLA proteins with a MANNAN-SYNTHESIS-RELATED (MSR) co-factor from Arabidopsis thaliana. CONCLUSION: The results provide novel routes for the engineering of polysaccharide-based biomaterials that are needed for a sustainable bioeconomy. The characterization of chimeric cellulose synthase-like enzymes in yeast offers an exciting avenue to produce plant polysaccharides in a tunable manner. Furthermore, cells modified with non-toxic plant polysaccharides such as ß-mannan offer a modular chassis to produce and encapsulate sensitive cargo such as therapeutic proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...