Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-443286

RESUMO

Safe and effective vaccines are needed to end the COVID-19 pandemic caused by SARS-CoV-2. Here we report the preclinical development of a lipid nanoparticle (LNP) formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern (VOCs), including the B.1.1.7, B.1.351 and P.1 lineages. No adverse effects were induced by PTX-COVID19-B in both mice and hamsters. These preclinical results indicate that PTX-COVID19-B is safe and effective. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 1 clinical trial ongoing (ClinicalTrials.gov number: NCT04765436). One Sentence SummaryPTX-COVID19-B is a SARS-CoV-2 mRNA vaccine that is highly immunogenic, safe, and effective in preventing SARS-CoV-2 infection in mice and hamsters and is currently being evaluated in human clinical trials.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20228098

RESUMO

BackgroundThere are currently no effective treatments for outpatients with coronavirus disease 2019 (COVID-19). Interferon-lambda-1 is a Type III interferon involved in the innate antiviral response with activity against respiratory pathogens. MethodsIn this double-blind, placebo-controlled trial, outpatients with laboratory-confirmed COVID-19 were randomized to a single subcutaneous injection of peginterferon-lambda 180g or placebo within 7 days of symptom onset or first positive swab if asymptomatic. The primary endpoint was proportion negative for SARS-CoV-2 RNA on Day 7 post-injection. FindingsThere were 30 patients per arm, with median baseline SARS-CoV-2 viral load of 6.71 (IQR 1.3-8.0) log copies/mL. The decline in SARS-CoV-2 RNA was greater in those treated with peginterferon-lambda than placebo (p=0.04). On Day 7, 24 participants (80%) in the peginterferon-lambda group had an undetectable viral load compared to 19 (63%) in the placebo arm (p=0.15). After controlling for baseline viral load, peginterferon lambda treatment resulted in a 4.12-fold (95CI 1.15-16.7, p=0.029) higher likelihood of viral clearance by Day 7. Of those with baseline viral load above 10E6 copies/mL, 15/19 (79%) in the peginterferon-lambda group were undetectable on Day 7 compared to 6/16 (38%) in the placebo group (p=0.012). Adverse events were similar between groups with only mild reversible transaminase elevations more frequently observed in the peginterferon-lambda group. InterpretationPeginterferon-lambda accelerated viral decline in outpatients with COVID-19 resulting in a greater proportion with viral clearance by Day 7, particularly in those with high baseline viral load. Peginterferon-lambda may have potential to prevent clinical deterioration and shorten duration of viral shedding. (NCT04354259) FundingThis study was supported by the Toronto COVID-19 Action Initiative, University of Toronto and the Ontario First COVID-19 Rapid Research Fund. Medication was supplied by Eiger BioPharma. Research in ContextTreatment trials for COVID-19 have largely focused on hospitalized patients and no treatments are approved for people with mild to moderate disease in the outpatient setting. A number of studies in ambulatory populations have been registered but no controlled studies in the outpatient setting have been reported to date (Pubmed Search October 20, 2020, COVID-19 treatment; controlled trials). Uncontrolled case series of hydroxychloroquine with or without azithromycin have been reported with mixed results but no clear signal of efficacy and some concerns raised about cardiac toxicity. Treamtent in the outpatient setting has potential to prevent infected individuals from deteriorating and perhaps more importantly, may shorten the duration of viral shedding, reducing the risk of transmission and the duration required for self-isolation, with significant public health and societal impact. Added value of this studyThis is the first study to show an antiviral effect in outpatients with COVID-19. After controlling for baseline viral load, those treated with peginterferon-lambda had a 4.12-fold (95%CI 1.15-16.7, p=0.029) higher odds of viral clearance by Day 7 compared to those who received placebo. The viral load decline was faster with pegterferon-lambda and the effect was most pronounced in those with high viral loads. In individuals with a baseline viral load of 10E6 copies/mL or higher, 15/19 (79%) in the peginterferon-lambda arm cleared by Day 7 compared to 6/16 (38%) (p=0.012) in the placebo arm (OR 6.25, 95%CI 1.49-31.1, p=0.012), translating to a median time to viral clearance of 7 days (95%CI 6.2-7.8 days) with peginterferon-lambda compared to 10 days (95%CI 7.8-12.2 days) with placebo (p=0.038). Those with low viral loads (<10E6 copies/mL) cleared quickly in both groups. Peginterferon-lambda was well-tolerated with a similar side effect profile to placebo and no concerning laboratory adverse events. Implications of all available evidenceThere is no currently approved therapy for outpatients with COVID-19. This study showed that peginterferon-lambda accelerated viral clearance, particularly in those with high baseline viral loads, highlighting the importance of quantitative viral load testing in the evaluation of antiviral agents for COVID-19. Treatment early in the course of disease may prevent clinical deterioration and shorenting of the duration of viral shedding may have important public health impact by limiting transmission and reducing the duration required for self-isolation. Additional trials of peginterferon-lambda and other antiviral strategies in the outpatient setting are required.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-037382

RESUMO

SARS-CoV-2 emerged in December 2019 in Wuhan, China and has since infected over 1.5 million people, of which over 107,000 have died. As SARS-CoV-2 spreads across the planet, speculations remain about the range of human cells that can be infected by SARS-CoV-2. In this study, we report the isolation of SARS-CoV-2 from two COVID-19 patients in Toronto, Canada. We determined the genomic sequences of the two isolates and identified single nucleotide changes in representative populations of our virus stocks. More importantly, we tested a wide range of human immune cells for productive infection with SARS-CoV-2. Here we confirm that human primary peripheral blood mononuclear cells (PBMCs) are not permissive to SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor small nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine cell susceptibility and pathogenicity using in vitro and in vivo infection models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...