Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266195

RESUMO

BackgroundInformation on the occupational distribution of COVID-19 mortality is limited. ObjectiveTo characterize COVID-19 fatalities among working Californians. DesignRetrospective study of laboratory-confirmed COVID-19 fatalities with dates of death from January 1 to December 31, 2020. SettingCalifornia. ParticipantsCOVID-19 accounted for 8,050 (9.9%) of 81,468 fatalities among Californians 18-64 years old. Of these decedents, 2,486 (30.9%) were matched to state employment records and classified as "confirmed working." The remainder were classified as "likely working" (n=4,121 [51.2%]) or "not working" (n=1,443 [17.9%]) using death certificate and case registry data. MeasurementsWe calculated age-adjusted overall and occupation-specific COVID-19 mortality rates using 2019 American Community Survey denominators. ResultsConfirmed and likely working COVID-19 decedents were predominantly male (76.3%), Latino (68.7%), and foreign-born (59.6%), with high school or less education (67.9%); 7.8% were Black. The overall age-adjusted COVID-19 mortality rate was 30.0 per 100,000 workers (95% confidence interval [CI], 29.3-30.8). Workers in nine occupational groups had mortality rates higher than this overall rate, including those in farming (78.0; 95% CI, 68.7-88.2); material moving (77.8; 95% CI, 70.2-85.9); construction (62.4; 95% CI, 57.7-67.4); production (60.2; 95% CI, 55.7-65.0); and transportation (57.2; 95% CI, 52.2-62.5) occupations. While occupational differences in mortality were evident across demographic groups, mortality rates were three-fold higher for male compared with female workers and three- to seven-fold higher for Latino and Black workers compared with Asian and White workers. LimitationsThe requirement that fatalities be laboratory-confirmed and the use of 2019 denominator data may underestimate the occupational burden of COVID-19 mortality. ConclusionCalifornians in manual labor and in-person service occupations experienced disproportionate COVID-19 mortality, with the highest rates observed among male, Latino, and Black workers.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250266

RESUMO

BackgroundThough SARS-CoV-2 outbreaks have been documented in occupational settings and though there is speculation that essential workers face heightened risks for COVID-19, occupational differences in excess mortality have, to date, not been examined. Such information could point to opportunities for intervention, such as workplace modifications and prioritization of vaccine distribution. Methods and findingsUsing death records from the California Department of Public Health, we estimated excess mortality among Californians 18-65 years of age by occupational sector and occupation, with additional stratification of the sector analysis by race/ethnicity. During the COVID-19 pandemic, working age adults experienced a 22% increase in mortality compared to historical periods. Relative excess mortality was highest in food/agriculture workers (39% increase), transportation/logistics workers (28% increase), facilities (27%) and manufacturing workers (23% increase). Latino Californians experienced a 36% increase in mortality, with a 59% increase among Latino food/agriculture workers. Black Californians experienced a 28% increase in mortality, with a 36% increase for Black retail workers. Asian Californians experienced an 18% increase, with a 40% increase among Asian healthcare workers. Excess mortality among White working-age Californians increased by 6%, with a 16% increase among White food/agriculture workers. ConclusionsCertain occupational sectors have been associated with high excess mortality during the pandemic, particularly among racial and ethnic groups also disproportionately affected by COVID-19. In-person essential work is a likely venue of transmission of coronavirus infection and must be addressed through strict enforcement of health orders in workplace settings and protection of in-person workers. Vaccine distribution prioritizing in-person essential workers will be important for reducing excess COVID mortality.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20169797

RESUMO

BackgroundLarge-scale school closures have been implemented worldwide to curb the spread of COVID-19. However, the impact of school closures and re-opening on epidemic dynamics remains unclear. MethodsWe simulated COVID-19 transmission dynamics using an individual-based stochastic model, incorporating social-contact data of school-aged children during shelter-in-place orders derived from Bay Area (California) household surveys. We simulated transmission under observed conditions and counterfactual intervention scenarios between March 17-June 1, and evaluated various fall 2020 K-12 reopening strategies. FindingsBetween March 17-June 1, assuming children <10 were half as susceptible to infection as older children and adults, we estimated school closures averted a similar number of infections (13,842 cases; 95% CI: 6,290, 23,040) as workplace closures (15,813; 95% CI: 9,963, 22,617) and social distancing measures (7,030; 95% CI: 3,118, 11,676). School closure effects were driven by high school and middle school closures. Under assumptions of moderate community transmission, we estimate that fall 2020 school reopenings will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1), and elementary school teachers (4.1%, 95% CI: -1.7, 12.0). Results are highly dependent on uncertain parameters, notably the relative susceptibility and infectiousness of children, and extent of community transmission amid re-opening. The school-based interventions needed to reduce the risk to fewer than an additional 1% of teachers infected varies by grade level. A hybrid-learning approach with halved class sizes of 10 students may be needed in high schools, while maintaining small cohorts of 20 students may be needed for elementary schools. InterpretationMultiple in-school intervention strategies and community transmission reductions, beyond the extent achieved to date, will be necessary to avoid undue excess risk associated with school reopening. Policymakers must urgently enact policies that curb community transmission and implement within-school control measures to simultaneously address the tandem health crises posed by COVID-19 and adverse child health and development consequences of long-term school closures. FundingJVR, JRH, QC, PAC, SP, AKH, CMH, and KC were supported in part by National Science Foundation grant no. 2032210, National Institutes of Health grants nos. R01AI125842, R01TW010286 and R01AI148336, and by the University of California Multicampus Research Programs and Initiatives award # 17-446315. JAL received support from the Berkeley Population Center (grant number P2CHD073964 from the National Institute of Child Health & Human Development, National Institutes of Health). Research in ContextO_ST_ABSEvidence before this studyC_ST_ABSGiven the urgent need to enact quick public health interventions to curb transmission of SARS-CoV-2, large-scale school closures were implemented globally. We searched the terms "school", "children", "closure", "coronavirus", and "COVID-19" in PubMed to assess the current evidence evaluating the role of school closures in mitigating SARS-CoV-2 transmission. Data motivating the decision to close schools remained largely limited to experiences with influenza outbreaks, where children are highly susceptible to infection, are key drivers of transmission, and experience severe outcomes. At the time of writing, no modeling studies to our knowledge have quantified the net impact of COVID-19 related school closures in the United States, and observational studies that documented decreases in COVID-19 incidence associated with statewide school closures are subject to confounding by other concurrently implemented non-pharmaceutical interventions. Further, the scientific consensus remains fragmented in its understanding of key epidemiological parameters, namely the relative susceptibility and infectiousness of children compared to adults, exacerbating uncertainties around the risks of opening schools. As policymakers weigh the negative consequences of school closures on child health and development against the risks of reopening, it becomes critical to discern the range of potential impacts of school reopenings on the COVID-19 epidemic accounting for uncertainty in epidemiological parameters and plausible strategies for risk mitigation. Added value of this studyThis study uses an individual-based transmission model parameterized with contact patterns we derived from a web-based contact survey administered to Bay Area (California) households with children during school closures to advance the understanding of the relative impact of Bay Area spring 2020 school closures compared to other non-pharmaceutical interventions, and projects the potential impact of school reopening strategies in the fall 2020 semester. Within the context of our model, we found that school closures averted a similar number of cases as workplace closures in spring 2020, with most of the averted cases attributable to high school closures. We found that COVID-19 risks associated with reopening schools in fall 2020 are highly dependent on the relative susceptibility of children and the level of community transmission at the time of reopening. Strategies necessary to reduce school transmission such that fewer than an additional 1% of teachers would be infected varied across school divisions. Safely reopening high schools may require combining multiple strict contact reduction measures, including staggering school days, halving class sizes, or maintaining small, stable cohorts, while safely reopening elementary schools may be achieved with a more limited set of interventions, including use of stable cohorts and masks. Implications of all the available evidenceUnder plausible assumptions regarding the susceptibility and infectiousness of school-aged children and teenagers, this study highlights heterogeneity of COVID-19 risks, and necessary mitigation strategies, associated with reopening across levels of schooling. It also highlights the urgency of resolving uncertain parameters, especially those pertaining to the relative susceptibility and infectiousness of children. Research is needed to quantify the role of children in transmission of COVID-19 in schools or similar settings to enumerate the risk of school-based outbreaks, particularly as transmission remains high in many regions of the United States. To balance both the adverse long-term consequence of school closures on child development and concerns about safe reopening, policy makers must quickly devote resources to ensure schools that choose to reopen amid uncertain evidence can adopt and adhere to strict infection, prevention, and control strategies that are critical to ensuring students, teachers, and community members remain healthy.

4.
Phys Sportsmed ; 32(5): 41-5, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-20086412

RESUMO

Patellar tendinopathy (jumper's knee) may affect athletes who engage in explosive lower-limb movements. An eccentric contraction of the quadriceps when landing after a jump may lead to acute patellar tendon rupture, the end-stage of patellar tendinopathy. Plain x-rays will usually confirm the diagnosis. Treatment centers around reducing the stress placed on the patellar tendon. Postoperative functional restoration and preventive measures must address biomechanic abnormalities that may predispose patients to disruptive patellar tendon strain. As this case report shows, counseling patients who have early-stage tendinopathy on appropriate flexibility and plyometric exercises may prevent more serious damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...