Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancer Immunol Immunother ; 71(12): 2881-2898, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35460379

RESUMO

BACKGROUND: T-cell longevity is undermined by antigen-driven differentiation programs that render cells prone to attrition through several mechanisms. CD8 + T cells that express the Tcf-1 transcription factor have undergone limited differentiation and exhibit stem-cell-like replenishment functions that facilitate persistence. We engineered human CD8 + T cells to constitutively express Tcf-1 and a TCR specific for the NY-ESO-1 cancer-associated antigen. Co-engineered cells were assessed for their potential for adoptive cellular immunotherapy. METHODS: Tcf-1 mRNA encoding TCF-1B and TCF-1E isoforms, along with GzmB expression were assessed in CD62L + CD57 -, CD62L - CD57 -, and CD62L - CD57 + CD8 + T cells derived from normal donor lymphocytes. The impact of stable Tcf-1B expression on CD8 + T-cell phenotype, anti-tumor activity, and cell-cycle activity was assessed in vitro and in an in vivo tumor xenograft model. RESULTS: TCF-1B and TCF-1E were dynamically regulated during self-renewal, with progeny of recently activated naïve T cells more enriched for TCF-1B mRNA. Constitutive TCF-1B expression improved the survival of TCR-engineered CD8 + T cells upon engagement with tumor cells. Tcf-1B prohibited the acquisition of a GzmB High state, and protected T cells from apoptosis associated with elicitation of effector function, and promoted stem cell-like characteristics. CONCLUSIONS: Tcf-1 protects TCR-engineered CD8 + T cells from activation induced cell death by restricting GzmB expression. Our study presents constitutive Tcf-1B expression as a potential means to impart therapeutic T cells with attributes of persistence for durable anti-tumor activity.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Fator 1 de Transcrição de Linfócitos T , Humanos , Antígenos de Neoplasias , Granzimas/metabolismo , Receptores de Antígenos de Linfócitos T , RNA Mensageiro/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo
3.
Commun Biol ; 4(1): 102, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483601

RESUMO

Pro-inflammatory M1 macrophage polarization is associated with microbicidal and antitumor responses. We recently described APOBEC3A-mediated cytosine-to-uracil (C > U) RNA editing during M1 polarization. However, the functional significance of this editing is unknown. Here we find that APOBEC3A-mediated cellular RNA editing can also be induced by influenza or Maraba virus infections in normal human macrophages, and by interferons in tumor-associated macrophages. Gene knockdown and RNA_Seq analyses show that APOBEC3A mediates C>U RNA editing of 209 exonic/UTR sites in 203 genes during M1 polarization. The highest level of nonsynonymous RNA editing alters a highly-conserved amino acid in THOC5, which encodes a nuclear mRNA export protein implicated in M-CSF-driven macrophage differentiation. Knockdown of APOBEC3A reduces IL6, IL23A and IL12B gene expression, CD86 surface protein expression, and TNF-α, IL-1ß and IL-6 cytokine secretion, and increases glycolysis. These results show a key role of APOBEC3A cytidine deaminase in transcriptomic and functional polarization of M1 macrophages.


Assuntos
Citidina Desaminase/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Edição de RNA , Humanos , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...