Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 32(17): 4289-96, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27063955

RESUMO

Organic-inorganic hybrid materials formed by sequential vapor infiltration (SVI) of trimethylaluminum into polyester fibers are demonstrated, and the photoluminescence of the fibers is evaluated using a combined UV-vis and photoluminescence excitation (PLE) spectroscopy approach. The optical activity of the modified fibers depends on infiltration thermal processing conditions and is attributed to the reaction mechanisms taking place at different temperatures. At low temperatures a single excitation band and dual emission bands are observed, while, at high temperatures, two distinct absorption bands and one emission band are observed, suggesting that the physical and chemical structure of the resulting hybrid material depends on the SVI temperature. Along with enhancing the photoluminescence intensity of the PET fibers, the internal quantum efficiency also increased to 5-fold from ∼4-5% to ∼24%. SVI processing also improved the photocatalytic activity of the fibers, as demonstrated by photodeposition of Ag and Au metal particles out of an aqueous metal salt solution onto fiber surfaces via UVA light exposure. Toward applications in flexible electronics, well-defined patterning of the metallic materials is achieved by using light masking and focused laser rastering approaches.

2.
J Biomed Opt ; 20(6): 065005, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26091373

RESUMO

A useful laboratory technique has been devised using commonly available optical hardware and software to accurately measure the eye's response to flashing light-emitting diode (LED) sources. A simplified version of the modified Allard technique is implemented using a silicon detector, a digital multimeter, and Labview software to collect and analyze the data. Using calibrated radiometric measurements, the method presented allows quantifying, in photopic units, the human eye's response to these sources. The procedure first requires exact conversion of irradiance measurements from radiometric to photopic units and this is done; however, during the study, it was determined that for LEDs with narrow spectra, this conversion can be simplified using an approximation. This involves taking the spectral form of the LED to be a delta function situated at its peak wavelength, which makes the conversion from watts to lumens a simple multiplication by the luminous efficiency, η(λ) value at that peak wavelength. For LEDs with a full width at half maximum of 20 nm or less, this approximation is found to be accurate to ±5% throughout the visible range


Assuntos
Visão de Cores/fisiologia , Luz , Radiometria/métodos , Testes Visuais/métodos , Humanos , Modelos Teóricos
3.
Phys Rev Lett ; 112(18): 187401, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856720

RESUMO

The role of many-body interactions is experimentally and theoretically investigated near the saddle point absorption peak of graphene. The time and energy-resolved differential optical transmission measurements reveal the dominant role played by electron-acoustic phonon coupling in band structure renormalization. Using a Born approximation for electron-phonon coupling and experimental estimates of the dynamic lattice temperature, we compute the differential transmission line shape. Comparing the numerical and experimental line shapes, we deduce the effective acoustic deformation potential to be Deff(ac)≃5 eV. This value is in accord with recent theoretical predictions but differs from those extracted using electrical transport measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...