Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110477

RESUMO

Viruses infect all living organisms, but the viruses of most marine animals are largely unknown. Crustacean zooplankton are a functional lynchpin in marine food webs, but very few have been interrogated for their associated viruses despite the profound potential effects of viral infection. Nonetheless, it is clear that the diversity of viruses in crustacean zooplankton is enormous, including members of all realms of RNA viruses, as well as single- and double-stranded DNA viruses, in many cases representing deep branches of viral evolution. As there is clear evidence that many of these viruses infect and replicate in zooplankton species, we posit that viral infection is likely responsible for a significant portion of unexplained non-consumptive mortality in this group. In turn, this infection affects food webs and alters biogeochemical cycling. In addition to the direct impacts of infection, zooplankton can vector economically devastating viruses of finfish and other crustaceans. The dissemination of these viruses is facilitated by the movement of zooplankton vertically between epi- and mesopelagic communities through seasonal and diel vertical migration (DVM) and across long distances in ship ballast water. The large potential impact of viruses on crustacean zooplankton emphasises the need to clearly establish the relationships between specific viruses and the zooplankton they infect and investigate disease and mortality for these host-virus pairs. Such data will enable investigations into a link between viral infection and seasonal dynamics of host populations. We are only beginning to uncover the diversity and function of viruses associated with crustacean zooplankton.

2.
Org Lett ; 19(23): 6368-6371, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29135268

RESUMO

Functionalized bicyclic amino-azaheterocycles are rapidly accessed in a one-pot cross-coupling/reduction sequence enabled by the use of COware. Incompatible reagents are physically separated in a single reaction vessel to effect two chemoselective transformations-Suzuki-Miyaura cross-coupling and heteroarene reduction. The developed method allows access to novel heterocyclic templates, including semisaturated Hedgehog and dual PI3K/mTOR inhibitors, which show enhanced physicochemical properties compared to their unsaturated counterparts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...