Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054866

RESUMO

The development of bioscaffolds for cardiovascular medical applications, such as peripheral artery disease (PAD), remains to be a challenge for tissue engineering. PAD is an increasingly common and serious cardiovascular illness characterized by progressive atherosclerotic stenosis, resulting in decreased blood perfusion to the lower extremities. Percutaneous transluminal angioplasty and stent placement are routinely performed on these patients with suboptimal outcomes. Natural Vascular Scaffolding (NVS) is a novel treatment in the development for PAD, which offers an alternative to stenting by building on the natural structural constituents in the extracellular matrix (ECM) of the blood vessel wall. During NVS treatment, blood vessels are exposed to a photoactivatable small molecule (10-8-10 Dimer) delivered locally to the vessel wall via an angioplasty balloon. When activated with 450 nm wavelength light, this therapy induces the formation of covalent protein-protein crosslinks of the ECM proteins by a photochemical mechanism, creating a natural scaffold. This therapy has the potential to reduce the need for stent placement by maintaining a larger diameter post-angioplasty and minimizing elastic recoil. Experiments were conducted to elucidate the mechanism of action of NVS, including the molecular mechanism of light activation and the impact of NVS on the ECM.


Assuntos
Prótese Vascular , Matriz Extracelular/efeitos da radiação , Alicerces Teciduais/química , Angioplastia com Balão , Animais , Artérias/fisiologia , Fenômenos Biomecânicos , Reagentes de Ligações Cruzadas/química , Dimerização , Hipercolesterolemia/diagnóstico por imagem , Hipercolesterolemia/fisiopatologia , Hipercolesterolemia/terapia , Luz , Peptídeos/química , Suínos
2.
Org Biomol Chem ; 20(7): 1379-1385, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35084425

RESUMO

We developed a convergent strategy to build, cyclize and excise nitrogen from tertiary amines for the synthesis of polyheterocyclic aromatics. Biaryl-linked azepine intermediates can undergo a deaminative ring contraction cascade reaction, excising nitrogen with the formation of an aromatic core. This strategy and deaminative ring contraction reaction are useful for the synthesis of benzo[h]quinolines.


Assuntos
Aminas
3.
J Org Chem ; 85(15): 9979-9992, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32668901

RESUMO

Current methods to achieve transition-metal-catalyzed alkyl carbon-nitrogen (C-N) bond cleavage require the preformation of ammonium, pyridinium, or sulfonamide derivatives from the corresponding alkyl amines. These activated substrates permit C-N bond cleavage, and their resultant intermediates can be intercepted to affect carbon-carbon bond-forming transforms. Here, we report the combination of in situ amine methylation and Ni-catalyzed benzalkyl C-N bond cleavage under reductive conditions. This method permits iterative alkyl group transfer from tertiary amines and demonstrates a deaminative strategy for the construction of Csp3-Csp3 bonds. We demonstrate PO(OMe)3 (trimethylphosphate) to be a Ni-compatible methylation reagent for the in situ conversion of trialkyl amines into tetraalkylammonium salts. Single, double, and triple benzalkyl group transfers can all be achieved from the appropriately substituted tertiary amines. Transformations developed herein proceed via recurring events: the in situ methylation of tertiary amines by PO(OMe)3, Ni-catalyzed C-N bond cleavage, and concurrent Csp3-Csp3 bond formation.


Assuntos
Aminas , Nitrogênio , Alquilação , Catálise , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...