Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell ; 6(4): 197-208, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30956972

RESUMO

Chlamydia pneumoniae is an airborne, Gram-negative, obligate intracellular bacterium which causes human respiratory infections and has been associated with atherosclerosis. Because individuals with periodontitis are at greater risk for atherosclerosis as well as respiratory infections, we in-vestigated the role of C. pneumoniae in inflammation and periodontal dis-ease. We found that C. pneumoniae was more frequently found in subgingival dental plaque obtained from periodontally diseased sites of the mouth versus healthy sites. The known periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, were also found in the plaque. In addition, C. pneumoniae could efficiently invade human gingival epithelial cells (GECs) in vitro, causing translocation of NF-κB to the nucleus along with increased secretion of mature IL-1ß cytokine. Supernatants collected from C. pneumoniae-infected GECs showed increased activation of caspase-1 protein, which was significantly reduced when nlrp3 gene expression was silenced using shRNA lentiviral vectors. Our results demonstrate that C. pneumoniae was found in higher levels in periodontitis patients compared to control pa-tients. Additionally, C. pneumoniae could infect GECs, leading to inflammation caused by activation of NF-κB and the NLRP3 inflammasome. We propose that the presence of C. pneumoniae in subgingival dental plaque may contribute to periodontal disease and could be used as a potential risk indicator of perio-dontal disease.

2.
Org Biomol Chem ; 2(17): 2517-29, 2004 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-15326533

RESUMO

Alpha-tert-butoxystyrene [H2C=C(OBut)Ph] reacts with alpha-bromocarbonyl or alpha-bromosulfonyl compounds [R1R2C(Br)EWG; EWG =-C(O)X or -S(O2)X] to bring about replacement of the bromine atom by the phenacyl group and give R1R2C(EWG)CH2C(O)Ph. These reactions take place in refluxing benzene or cyclohexane with dilauroyl peroxide or azobis(isobutyronitrile) as initiator and proceed by a radical-chain mechanism that involves addition of the relatively electrophilic radical R1R2(EWG)C* to the styrene. This is followed by beta-scission of the derived alpha-tert-butoxybenzylic adduct radical to give But*, which then abstracts bromine from the organic halide to complete the chain. Alpha-1-adamantoxystyrene reacts similarly with R1R2C(Br)EWG, at higher temperature in refluxing octane using di-tert-amyl peroxide as initiator, and gives phenacylation products in generally higher yields than are obtained using alpha-tert-butoxystyrene. Simple iodoalkanes, which afford relatively nucleophilic alkyl radicals, can also be successfully phenacylated using alpha-1-adamantoxystyrene. O-Alkyl O-(tert-butyldimethylsilyl) ketene acetals H2C=C(OR)OTBS, in which R is a secondary or tertiary alkyl group, react in an analogous fashion with organic halides of the type R1R2C(Br)EWG to give the carboxymethylation products R1R2C(EWG)CH2CO2Me, after conversion of the first-formed silyl ester to the corresponding methyl ester. The silyl ketene acetals also undergo radical-chain reactions with electron-poor alkenes to bring about alkylation-carboxymethylation of the latter. For example, phenyl vinyl sulfone reacts with H2C=C(OBut)OTBS to afford ButCH2CH(SO2Ph)CH2CO2Me via an initial silyl ester. In a more complex chain reaction, involving rapid ring opening of the cyclopropyldimethylcarbinyl radical, the ketene acetal H2C=C(OCMe2C3H5-cyclo)OTBS reacts with two molecules of N-methyl- or N-phenyl-maleimide to bring about [3 + 2] annulation of one molecule of the maleimide, and then to link the bicyclic moiety thus formed to the second molecule of the maleimide via an alkylation-carboxymethylation reaction.


Assuntos
Carbono/química , Cetonas/síntese química , Alcenos/química , Cristalografia por Raios X , Radicais Livres/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química
3.
Org Biomol Chem ; 1(22): 4073-84, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14664397

RESUMO

The thiol-catalysed radical-chain redox rearrangement of cyclic benzylidene acetals derived from 1,2- and 1,3-diols of terpene origin has been investigated from both synthetic and mechanistic standpoints. The redox rearrangement was carried out either at ca. 70 degrees C (using Bu(t)ON=NOBu(t) as initiator) or at ca. 130 degrees C (using Bu(t)OOBu(t) as initiator) in the presence of triisopropylsilanethiol or methyl thioglycolate as catalyst; the silanethiol was usually more effective. This general reaction affords the benzoate ester of the monodeoxygenated diol, unless rearrangement of intermediate carbon-centred radicals takes place prior to final trapping by the thiol to give the product, in which case structurally rearranged esters are obtained. For the benzylidene acetals of 1,2-diols prepared by vicinal cis-dihydroxylation of 2-carene, alpha-pinene or beta-pinene, intermediate cyclopropylcarbinyl or cyclobutylcarbinyl radicals are involved and ring opening of these leads ultimately to unsaturated monocyclic benzoates. 1,2-Migration of the benzoate group in the intermediate beta-benzoyloxyalkyl radical sometimes also competes with thiol trapping during the redox rearrangement of benzylidene acetals derived from 1,2-diols. Redox rearrangement of the benzylidene acetal from carane-3,4-diol, obtained by cis-dihydroxylation of 3-carene, does not involve intermediate cyclopropylcarbinyl radicals and leads to benzoate ester in which the bicyclic carane skeleton is retained. The inefficient redox rearrangement of the relatively rigid benzylidene acetal from exo,exo-norbornane-2,3-diol is attributed to comparatively slow chain-propagating beta-scission of the intermediate 2-phenyl-1,3-dioxolan-2-yl radical, probably caused by the development of adverse angle strain in the transition state for this cleavage. Similar angle strain effects are thought to influence the regioselectivities of redox rearrangement of bicyclic [4.4.0]benzylidene acetals resulting from selected 1,3-diols, themselves prepared by reduction of aldol adducts derived from reactions of aldehydes with the kinetic lithium enolates obtained from menthone and from isomenthone.

4.
Org Biomol Chem ; 1(8): 1330-41, 2003 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-12929663

RESUMO

Five- or six-membered cyclic benzylidene acetals, derived from 1,2- or 1,3-diol functionality in carbohydrates, undergo an efficient thiol-catalysed radical-chain redox rearrangement resulting in deoxygenation at one of the diol termini and formation of a benzoate ester function at the other. The role of the thiol is to act as a protic polarity-reversal catalyst to promote the overall abstraction of the acetal hydrogen atom by a nucleophilic alkyl radical. The redox rearrangement is carried out in refluxing octane and/or chlorobenzene as solvent at ca. 130 degrees C and is initiated by thermal decomposition of di-tert-butyl peroxide (DTBP) or 2,2-bis(tert-butylperoxy)butane. The silanethiols (Bu(t)O)3SiSH and Pr(i)3SiSH (TIPST) are particularly efficient catalysts and the use of DTBP in conjunction with TIPST is generally the most effective and convenient combination. The reaction has been applied to the mono-deoxygenation of a variety of monosaccharides by way of 1,2-, 3,4- and 4,6-O-benzylidene pyranoses and a 5,6-O-benzylidene furanose. It has also been applied to bring about the dideoxygenation of mannose and of the disaccharide alpha,alpha-trehalose. The use of p-methoxybenzylidene acetals offers no great advantage and ethylene acetals do not undergo significant redox rearrangement under similar conditions. Functional group compatibility is good and tosylate, epoxide and ketone functions do not interfere; it is not necessary to protect free OH groups. Because of the different mechanisms of the ring-opening step (homolytic versus heterolytic), the regioselectivity of the redox rearrangement can differ usefully from that resulting from the Hanessian-Hullar (H.-H.) and Collins reactions for brominative ring opening of benzylidene acetals. When simple deoxygenation of a carbohydrate is desired, the one-pot redox rearrangement offers an advantage over H.-H./Collins-based procedures in that the reductive debromination step (which often involves the use of toxic tin hydrides) required by the latter methodology is avoided.


Assuntos
Acetais/química , Carboidratos/química , Oxigênio/química , Compostos de Sulfidrila/química , Catálise , Espectroscopia de Ressonância Magnética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...