Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
2.
Fungal Biol ; 127(12): 1524-1533, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38097326

RESUMO

We investigated conidial mass production of eight isolates of six entomopathogenic fungi (EPF), Aphanocladium album (ARSEF 1329), Beauveria bassiana (ARSEF 252 and 3462), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium anisopliae sensu lato (ARSEF 2341), Metarhizium pingshaense (ARSEF 1545), and Simplicillium lanosoniveum (ARSEF 6430 and 6651) on white or brown rice at four moisture conditions (75-100%). The tolerance of mass-produced conidia of the eight fungal isolates to UV-B radiation and heat (45 °C) were also evaluated. For each moisture content compared, a 20-g sample of rice in a polypropylene bag was inoculated with each fungal isolate in three replicates and incubated at 28 ± 1 °C for 14 days. Conidia were then harvested by washing the substrate, and conidial concentrations determined by haemocytometer counts. Conidial suspensions were inoculated on PDAY with 0.002% benomyl in Petri plates and exposed to 978 mW m-2 of Quaite-weighted UV-B for 2 h. Additionally, conidial suspensions were exposed to 45 °C for 3 h, and aliquots inoculated on PDAY with benomyl. The plates were incubated at 28 ± 1 °C, and germination was assessed at 400 × magnification after 48 h. Conidial production was generally higher on white rice than on brown rice for all fungal species, except for L. aphanocladii ARSEF 6433, regardless of moisture combinations. The 100% moisture condition provided higher conidial production for B. bassiana (ARSEF 252 and ARSEF 3462) and M. anisopliae (ARSEF 2341) isolates, while the addition of 10% peanut oil enhanced conidial yield for S. lanosoniveum isolate ARSEF 6430. B. bassiana ARSEF 3462 on white rice with 100% water yielded the highest conidial production (approximately 1.3 × 1010 conidia g-1 of substrate). Conidia produced on white rice with the different moisture conditions did not differ in tolerance to UV-B radiation or heat. However, high tolerance to UV-B radiation and heat was observed for B. bassiana, M. anisopliae, and A. album isolates. Heat-treated conidia of S. lanosoniveum and L. aphanocladii did not germinate.


Assuntos
Beauveria , Metarhizium , Esporos Fúngicos , Temperatura Alta , Benomilo , Controle Biológico de Vetores
3.
Fungal Biol ; 127(7-8): 1209-1217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495310

RESUMO

Little is known about the impact of hypoxia and anoxia during mycelial growth on tolerance to different stress conditions of developing fungal conidia. Conidia of the insect-pathogenic fungus Metarhizium robertsii were produced on potato dextrose agar (PDA) medium under normoxia (control = normal oxygen concentrations), continuous hypoxia, and transient anoxia, as well as minimal medium under normoxia. The tolerance of the conidia produced under these different conditions was evaluated in relation to wet heat (heat stress), menadione (oxidative stress), potassium chloride (osmotic stress), UV radiation, and 4-nitroquinoline-1-oxide (=4-NQO genotoxic stress). Growth under hypoxic condition induced higher conidial tolerance of M. robertsii to menadione, KCl, and UV radiation. Transient anoxic condition induced higher conidial tolerance to KCl and UV radiation. Nutritional stress (i.e., minimal medium) induced higher conidial tolerance to heat, menadione, KCl, and UV radiation. However, neither of these treatments induced higher tolerance to 4-NQO. The gene hsp30 and hsp101 encoding a heat shock protein was upregulated under anoxic condition. In conclusion, growth under hypoxia and anoxia produced conidia with higher stress tolerances than conidia produced in normoxic condition. The nutritive stress generated by minimal medium, however, induced much higher stress tolerances. This condition also caused the highest level of gene expression in the hsp30 and hsp101 genes. Thus, the conidia produced under nutritive stress, hypoxia, and anoxia had greater adaptation to stress.


Assuntos
Metarhizium , Vitamina K 3 , Esporos Fúngicos , Vitamina K 3/metabolismo , Raios Ultravioleta , Hipóxia/metabolismo
4.
Arch Microbiol ; 204(1): 83, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34958400

RESUMO

White light during mycelial growth influences high conidial stress tolerance of the insect-pathogenic fungus Metarhizium robertsii, but little is known if low- or high-white light irradiances induce different stress tolerances. The fungus was grown either in the dark using two culture media: on minimal medium (Czapek medium without sucrose = MM) or on potato dextrose agar (PDA) or PDA medium under five different continuous white light irradiances. The stress tolerances of conidia produced on all treatments were evaluated by conidial germination on PDA supplemented with KCl for osmotic stress or on PDA supplemented with menadione for oxidative stress. Conidia produced on MM in the dark were more tolerant to osmotic and oxidative stress than conidia produced on PDA in the dark or under the light. For osmotic stress, growth under the lower to higher irradiances produced conidia with similar tolerances but more tolerant than conidia produced in the dark. For oxidative stress, conidia produced under the white light irradiances were generally more tolerant to menadione than conidia produced in the dark. Moreover, conidia produced in the dark germinated at the same speed when incubated in the dark or under lower irradiance treatment. However, at higher irradiance, conidial germination was delayed compared to germination in the dark, which germinated faster. Therefore, growth under light from low to high irradiances induces similar conidial higher stress tolerances; however, higher white light irradiances cause a delay in germination speed.


Assuntos
Luz , Metarhizium , Metarhizium/fisiologia , Metarhizium/efeitos da radiação , Pressão Osmótica , Estresse Oxidativo , Esporos Fúngicos/efeitos da radiação
5.
Bull Entomol Res ; : 1-8, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34620258

RESUMO

The Mormon cricket (MC), Anabrus simplex Haldeman, 1852 (Orthoptera: Tettigoniidae), has a long and negative history with agriculture in Utah and other western states of the USA. Most A. simplex populations migrate in large groups, and their feeding can cause significant damage to forage plants and cultivated crops. Chemical pesticides are often applied, but some settings (e.g. habitats of threatened and endangered species) call for non-chemical control measures. Studies in Africa, South America, and Australia have assessed certain isolates of Metarhizium acridum as very promising pathogens for Orthoptera: Acrididae (locust) biocontrol. In the current study, two isolates of Metarhizium robertsii, one isolate of Metarhizium brunneum, one isolate of Metarhizium guizhouense, and three isolates of M. acridum were tested for infectivity to MC nymphs and adults of either sex. Based on the speed of mortality, M. robertsii (ARSEF 23 and ARSEF 2575) and M. brunneum (ARSEF 7711) were the most virulent to instars 2 to 5 MC nymphs. M. guizhouense (ARSEF 7847) from Arizona was intermediate and the M. acridum isolates (ARSEF 324, 3341, and 3609) were the slowest killers. ARSEF 2575 was also the most virulent to instar 6 and 7 nymphs and adults of MC. All of the isolates at the conidial concentration of 1 × 107 conidia ml-1 induced approximately 100% mortality by 6 days post application of fungal conidia. In conclusion, isolates ARSEF 23, ARSEF 2575, and ARSEF 7711 acted most rapidly to kill MC under laboratory conditions. The M. acridum isolates, however, have much higher tolerance to heat and UV-B radiation, which may be critical to their successful use in field application.

6.
J Basic Microbiol ; 61(1): 15-26, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33616987

RESUMO

The aim of the present study was to analyze ten native Metarhizium spp. isolates as to their UV-B tolerances. Comparisons included: different fungal propagules (conidia, blastospores, or microsclerotia [MS]); conidia in aqueous suspensions or in 10% mineral oil-in-water emulsions; and conidia mixed with different types of soil. The UV-B effect was expressed as the germination of conidia or culturability of blastospores and MS relative to nongerminated propagules. Metarhizium anisopliae LCM S05 exhibited high tolerance as blastospores and/or MS, but not as conidia; LCM S10 and LCM S08 had positive results with MS or conidia but not blastospores. The formulations with 10% mineral oil did not always protect Metarhizium conidia against UV-B. Conidia of LCM S07, LCM S08, and LCM S10 exhibited the best results when in aqueous suspensions, 24 h after UV-B exposure. In general, conidia mixed with soil and exposed to UV-B yielded similar number of colony forming units as conidia from unexposed soil, regardless the soil type. It was not possible to predict which type of propagule would be the most UV-B tolerant for each fungal isolate; in conclusion, many formulations and propagule types should be investigated early in the development of new fungal biocontrol products.


Assuntos
Metarhizium/fisiologia , Tolerância a Radiação , Metarhizium/isolamento & purificação , Metarhizium/efeitos da radiação , Controle Biológico de Vetores , Microbiologia do Solo , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/fisiologia , Esporos Fúngicos/efeitos da radiação , Raios Ultravioleta
7.
J Invertebr Pathol ; 157: 32-35, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30017952

RESUMO

The isolate ARSEF 324 of Metarhizium acridum is very tolerant to UV-B radiation and heat, but the intrinsic traits behind the extreme tolerance of this isolate to both stress conditions have not been elucidated. Because trehalose and mannitol are documented stress reducers in fungi, we investigated the accumulation of these compounds in conidia of ARSEF 324 compared with the accumulation of these two compounds in conidia of M. robertsii (ARSEF 23 and ARSEF 2575), which are considerably more susceptible to UV-B radiation and heat than ARSEF 324. Conidia of ARSEF 324 produced on potato dextrose agar plus yeast extract accumulated two-fold more trehalose and mannitol than conidia of ARSEF 23 and ARSEF 2575 produced on the same medium. The high accumulation of trehalose and mannitol in conidia of ARSEF 324 suggests one mechanism that it uses to attain its high tolerance to UV-B radiation and heat.


Assuntos
Manitol/metabolismo , Metarhizium/metabolismo , Termotolerância/fisiologia , Trealose/metabolismo , Raios Ultravioleta , Metarhizium/efeitos da radiação , Esporos Fúngicos/metabolismo , Esporos Fúngicos/efeitos da radiação
8.
Fungal Biol ; 122(6): 563-569, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29801801

RESUMO

Species of the Metarhizium anisopliae complex are globally ubiquitous soil-inhabiting and predominantly insect-pathogenic fungi. The Metarhizium genus contains species ranging from specialists, such as Metarhizium acridum that only infects acridids, to generalists, such as M. anisopliae, Metarhizium brunneum, and Metarhizium robertsii that infect a broad range of insects and can also colonize plant roots. There is little information available about the susceptibility of Metarhizium species to clinical and non-clinical antifungal agents. We determined the susceptibility of 16 isolates comprising four Metarhizium species with different ecological niches to seven clinical (amphotericin B, ciclopirox olamine, fluconazole, griseofulvin, itraconazole, tebinafine, and voriconazole) and one non-clinical (benomyl) antifungal agents. All isolates of the specialist M. acridum were clearly more susceptible to most antifungals than the isolates of the generalists M. anisopliae sensu lato, M. brunneum, and M. robertsii. All isolates of M. anisopliae, M. brunneum, and M. robertsii were resistant to fluconazole and some were also resistant to amphotericin B. The marked differences in susceptibility between the specialist M. acridum and the generalist Metarhizium species suggest that this characteristic is associated with their different ecological niches, and may assist in devising rational antifungal treatments for the rare cases of mycoses caused by Metarhizium species.


Assuntos
Antifúngicos/farmacologia , Metarhizium/efeitos dos fármacos , Micoses/microbiologia , Animais , Farmacorresistência Fúngica/genética , Ecossistema , Humanos , Insetos/microbiologia , Metarhizium/classificação , Metarhizium/genética
9.
J Invertebr Pathol ; 138: 94-103, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27317831

RESUMO

The effect of heat stress (45°C) versus non-heat stress (27°C) on germination of Metarhizium anisopliae sensu stricto (s.s.) isolate IP 119 was examined with conidia formulated (suspended) in pure mineral oil or in water (Tween 80, 0.01%), and then applied onto the cuticle of Rhipicephalus sanguineus sensu lato (s.l.) engorged females or onto culture medium (PDAY). In addition, bioassays were performed to investigate the effect of conidia heated while formulated in oil, then applied to blood-engorged adult R. sanguineus females. Conidia suspended in water then exposed to 45°C, in comparison to conidia formulated in mineral oil and exposed to the same temperature, germinated less and more slowly when incubated on either PDAY medium or tick cuticle. Also, conidial germination on tick cuticle was delayed in comparison to germination on artificial culture medium; for example, germination was 13% on tick cuticle 72h after inoculation, in contrast to 61.5% on PDAY medium. Unheated (27°C) conidia suspended in either water or oil and applied to tick cuticle developed appressoria 36h after treatment; whereas only heat-stressed conidia formulated in oil developed appressoria on tick cuticle. In comparison to conidia heated in mineral oil, there was a strong negative effect of heat on germination of conidia heated in water before being applied to arthropod cuticle. Nevertheless, bioassays [based primarily on egg production (quantity) and egg hatchability] exhibited high percentages of tick control regardless of the type of conidial suspension; i.e., water- or oil-formulated conidia, and whether or not conidia were previously exposed to heat. In comparison to aqueous conidial preparations, however, conidia formulated in oil reduced egg hatchability irrespective of heat or no-heat exposure. In conclusion, mineral-oil formulation protected conidia against heat-induced delay of both germination and appressorium production when applied to the cuticle of R. sanguineus.


Assuntos
Metarhizium , Controle Biológico de Vetores/métodos , Rhipicephalus sanguineus/parasitologia , Controle de Ácaros e Carrapatos/métodos , Animais , Temperatura Alta , Óleo Mineral
10.
Curr Genet ; 61(3): 427-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25986971

RESUMO

Ultraviolet radiation from sunlight is probably the most detrimental environmental factor affecting the viability of entomopathogenic fungi applied to solar-exposed sites (e.g., leaves) for pest control. Most entomopathogenic fungi are sensitive to UV radiation, but there is great inter- and intraspecies variability in susceptibility to UV. This variability may reflect natural adaptations of isolates to their different environmental conditions. Selecting strains with outstanding natural tolerance to UV is considered as an important step to identify promising biological control agents. However, reports on tolerance among the isolates used to date must be analyzed carefully due to considerable variations in the methods used to garner the data. The current review presents tables listing many studies in which different methods were applied to check natural and enhanced tolerance to UV stress of numerous entomopathogenic fungi, including several well-known isolates of these fungi. The assessment of UV tolerance is usually conducted with conidia using dose-response methods, wherein the UV dose is calculated simply by multiplying the total irradiance by the period (time) of exposure. Although irradiation from lamps seldom presents an environmentally realistic spectral distribution, laboratory tests circumvent the uncontrollable circumstances associated with field assays. Most attempts to increase field persistence of microbial agents have included formulating conidia with UV protectants; however, in many cases, field efficacy of formulated fungi is still not fully adequate for dependable pest control.


Assuntos
Adaptação Biológica , Fungos/fisiologia , Fungos/efeitos da radiação , Estresse Fisiológico , Raios Ultravioleta , Microbiologia Ambiental , Fungos/isolamento & purificação
11.
Curr Genet ; 61(3): 405-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25824285

RESUMO

Conidia are specialized structures produced at the end of the asexual life cycle of most filamentous fungi. They are responsible for fungal dispersal and environmental persistence. In pathogenic species, they are also involved in host recognition and infection. Conidial production, survival, dispersal, germination, pathogenicity and virulence can be strongly influenced by exposure to solar radiation, although its effects are diverse and often species dependent. UV radiation is the most harmful and mutagenic waveband of the solar spectrum. Direct exposure to solar radiation for a few hours can kill conidia of most fungal species. Conidia are killed both by solar UV-A and UV-B radiation. In addition to killing conidia, which limits the size of the fungal population and its dispersion, exposures to sublethal doses of UV radiation can reduce conidial germination speed and virulence. The focus of this review is to provide an overview of the effects of solar radiation on conidia and on the major systems involved in protection from and repair of damage induced by solar UV radiation. The efforts that have been made to obtain strains of fungi of interest such as entomopathogens more tolerant to solar radiation will also be reviewed.


Assuntos
Meio Ambiente , Fungos/fisiologia , Fungos/efeitos da radiação , Esporos Fúngicos , Raios Ultravioleta , Adaptação Biológica , Animais , Dano ao DNA/efeitos da radiação , Insetos/microbiologia , Luz , Viabilidade Microbiana/efeitos da radiação , Processos Fototróficos , Estresse Fisiológico , Luz Solar
12.
Parasitol Res ; 114(6): 2309-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25786608

RESUMO

Pr1 is a subtilisin-like protease produced by Metarhizium spp. entomopathogenic fungi, and it is recognized as heavily involved in the initial steps of the fungal invasion of arthropod-host cuticles. In the current study, correlation was sought between mortality of tick larvae and conidial Pr1 levels of one Metarhizium anisopliae senso latu (s.l.) isolate (CG 148). Conidia with different levels of pr1 gene expression and enzymatic activity were obtained by producing them on either artificial medium (to yield low Pr1 activity) or on Rhipicephalus microplus cadavers (to yield high Pr1 activity). Conidial proteolytic activity was assessed using N-suc-ala-ala-pro-phe-ρNA as the chromogenic substrate, and pr1 expression was profiled by qPCR using three genes (gpd, try, and tef) as reference genes. Pr1 enzymatic (proteolytic) activity on conidia obtained from tick cadavers was 36 U mg(-1) in comparison to 4 U mg(-1) on conidia from PDA medium. Also, pr1 gene expression level was ten times higher in conidia from tick cadavers compared to PDA medium. Bioassays of M. anisopliae s.l. CG 148 spores with elevated Pr1 proteolytic activity and gene expression levels did not demonstrate increased virulence (= significant change percent mortality of tick larvae). The minimal levels of Pr1 on conidia produced on artificial medium was adequate to afford high levels of virulence, and the elevated amounts of the enzyme on tick-cadaver-produced conidia did not induce elevated larval mortality. As long as some Pr1 activity was present, fungal virulence of isolate CG 148 against tick larvae was not elevated by increased levels of conidial Pr1.


Assuntos
Metarhizium/patogenicidade , Rhipicephalus/microbiologia , Animais , Bioensaio , Regulação Enzimológica da Expressão Gênica , Larva/microbiologia , Metarhizium/enzimologia , Metarhizium/fisiologia , Peptídeo Hidrolases , Controle Biológico de Vetores , Esporos Fúngicos/patogenicidade , Virulência
13.
Curr Genet ; 61(3): 383-404, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25791499

RESUMO

The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.


Assuntos
Adaptação Biológica , Meio Ambiente , Fungos/fisiologia , Interações Hospedeiro-Patógeno , Insetos/microbiologia , Esporos Fúngicos , Estresse Fisiológico , Animais , Fungos/patogenicidade , Fungos/efeitos da radiação , Temperatura Alta , Fenótipo , Raios Ultravioleta , Virulência
14.
J Arthroplasty ; 30(2): 216-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25316378

RESUMO

350 knees were evaluated in a prospective, randomized, double-blinded study of selective patellar resurfacing in primary total knee arthroplasty. Knees with exposed bone on the patellar articular surface were excluded. 327 knees were evaluated at a mean follow-up of 7.8years. 114 knees followed for greater than 10 years were analyzed separately. Satisfaction was higher in patients with a resurfaced patella. In patients followed for at least 10 years, no significant difference was found. No difference was found in KSS scores or survivorship. No complications of patellar resurfacing were identified. The vast majority of patients with remaining patellar articular cartilage do very well with total knee arthroplasty regardless of patellar resurfacing. Patient satisfaction may be slightly higher with patellar resurfacing.


Assuntos
Artroplastia do Joelho/métodos , Osteoartrite do Joelho/cirurgia , Patela/cirurgia , Idoso , Cartilagem Articular/cirurgia , Método Duplo-Cego , Feminino , Humanos , Prótese do Joelho , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Estudos Prospectivos
15.
PLoS One ; 9(8): e104946, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25127450

RESUMO

Destruxins (DTXs) are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E produced by these same isolates in submerged (shaken) cultures. Eight of the isolates (ARSEF 324, 724, 760, 1448, 1882, 1883, 3479, and 3918) did not produce DTXs A, B, or E during the five days of submerged culture. DTXs were first detected in culture medium at 2-3 days in submerged culture. Galleria mellonella and Tenebrio molitor showed considerable variation in their susceptibility to the Metarhizium isolates. The concentration of DTXs produced in vitro did not correlate with percent or speed of insect kill. We established endophytic associations of M. robertsii and M. acridum isolates in Vigna unguiculata (cowpeas) and Cucumis sativus (cucumber) plants. DTXs were detected in cowpeas colonized by M. robertsii ARSEF 2575 12 days after fungal inoculation, but DTXs were not detected in cucumber. This is the first instance of DTXs detected in plants endophytically colonized by M. robertsii. This finding has implications for new approaches to fungus-based biological control of pest arthropods.


Assuntos
Depsipeptídeos/metabolismo , Fabaceae/microbiologia , Proteínas Fúngicas/metabolismo , Insetos/microbiologia , Metarhizium/fisiologia , Micotoxinas/metabolismo , Animais , Depsipeptídeos/análise , Fabaceae/química , Fabaceae/fisiologia , Proteínas Fúngicas/análise , Micotoxinas/análise
16.
J Invertebr Pathol ; 120: 67-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24909120

RESUMO

The habitats of many pest insects have fluctuating climatic conditions. To function effectively, the pathogens of these pests must be capable of infecting and developing disease at a wide range of temperatures. The current study examines ten Metarhizium spp. isolates as to their ability to recover normal metabolic activity after exposure to high temperature for several hours daily; and whether such recovery, with at least some isolates, requires a temporary repair ("retooling") period. Fungal colonies were exposed to 40°C for 4h or 8h followed by 20h or 16h at 28°C, respectively, for three consecutive days. Growth rates during treatments were compared to control plates (constant 28°C) and to plates with growth stoppage by cold treatment (4h or 8h at 5°C per day). All ten isolates survived 3days of cycled heat treatment and resumed normal growth afterward; some isolates however, were considerably more negatively affected by heat-cycling than others. In fact, some isolates underwent greatly reduced growth not only during 8h heating, but also some hours after cessation of heat treatment. This phenomenon is labeled in the current study as "post-stress growth delay" (PSGD). In contrast, all isolates stopped growing during 8h cold treatments, but immediately recommenced growing on return to 28°C. The delay in recommencing growth of some isolates after heat treatment amplifies the effect of this stress. In addition to the studies on the effects of heat cycling on fungal cultures, the effects of imposing such temperature cycling on fungal infection of insects was documented in the laboratory. Three Metarhizium isolates were bioassayed using Galleria mellonella larvae. Treated insects were placed at daily temperature regimes matching those used for the in vitro fungus rate-of-growth study, and insect mortality recorded daily. For all three isolates the levels of insect mortality at the highest-heat dose (40°C at 8h daily) significantly reduced infection. Fluctuating temperatures are likely to be a factor in most pest-insect habitats; therefore, the presence and level of PSGD of each isolate should be a primary consideration in selecting field-appropriate fungal isolates.


Assuntos
Metarhizium/crescimento & desenvolvimento , Metarhizium/patogenicidade , Mariposas/microbiologia , Virulência/fisiologia , Animais , Temperatura Alta , Controle Biológico de Vetores
18.
Fungal Biol ; 116(3): 438-42, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22385625

RESUMO

Salicylic acid (SA), a cell-signaling metabolite in plants, is involved in resistance of plants to pathogens and environmental stresses; however, there is little information available on the responses of fungi to SA. Conidia of Metarhizium robertsii (ARSEF 2575) (Hypocreales: Clavicipitaceae) were produced on potato dextrose agar medium plus yeast extract (PDAY) supplemented with 1, 2, 4, or 8 mM SA (pH adjusted to 6.9) and incubated under constant-dark conditions. Then the tolerance of conidia against wet heat (45 °C, 3 h) and UV-B radiation (7.0 kJ m(-2)) was tested. For comparison, conidia were also produced on minimal medium (MM) that contained no carbon source (carbon starvation), a condition known to induce elevated conidial tolerance to heat and UV-B radiation in M. robertsii. The heat tolerance of conidia produced on PDAY containing 1, 2, or 4 mM SA were two-fold higher than that of conidia produced on PDAY alone; which is the same level of thermotolerance induced by growth on MM. Conidia produced on PDAY with 8 mM SA, however, did not exhibit increased heat tolerance. Growth on PDAY + SA did not increase conidial UV-B tolerance at any of the SA concentrations tested. The conidial yields of M. robertsii produced on PDAY with all levels of SA were somewhat reduced in comparison to the yield on PDAY alone. Nevertheless, conidial yields on PDAY + SA were 20-40 times greater than that obtained on MM alone. In conclusion, M. robertsii conidia produced on PDAY medium containing low concentrations of SA demonstrated increased tolerance to heat, but not to UV-B radiation. In comparison to PDAY alone, SA-amended PDAY afforded somewhat reduced conidial yields; however, in a mass-production situation, yield reductions would be offset by the fact that the conidia obtained would have relatively high heat tolerance.


Assuntos
Metarhizium/efeitos dos fármacos , Metarhizium/fisiologia , Ácido Salicílico/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Meios de Cultura/química , Temperatura Alta , Metarhizium/crescimento & desenvolvimento , Metarhizium/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos da radiação , Raios Ultravioleta
19.
Exp Parasitol ; 130(3): 300-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22143088

RESUMO

Ticks are serious health threats for humans, and both domestic and wild animals. Ticks are controlled mostly by application of chemical products; but these acaricides have several negative side effects, including toxicity to animals, environmental contamination, and induction of chemical resistance in some tick populations. Entomopathogenic fungi infect arthropods in nature and can occur at enzootic or epizootic levels in their host populations. Laboratory studies clearly demonstrate that these fungi can cause high mortality in all developmental stages of several tick species, and also reduce oviposition of infected engorged females. Tick mortality following application of fungi in the field, however, often is less than that suggested by laboratory tests. This is due to many negative biotic and climatic factors. To increase efficacy of fungal agents for biological control of ticks under natural conditions, several points need consideration: (1) select effective isolates (viz., high virulence; and tolerance to high temperature, ultraviolet radiation and desiccation); (2) understand the main factors that affect virulence of fungal isolates to their target arthropods including the role of toxic metabolites of the fungal isolates; and (3) define with more precision the immune response of ticks to infection by entomopathogenic fungi. The current study reviews recent literature on biological control of ticks, and comments on the relevance of these results to advancing the development of fungal biocontrol agents, including improving formulation of fungal spores for use in tick control, and using entomopathogenic fungi in integrated pest (tick) management programs.


Assuntos
Fungos Mitospóricos/fisiologia , Controle Biológico de Vetores/métodos , Carrapatos/microbiologia , Animais , Beauveria/genética , Beauveria/patogenicidade , Beauveria/fisiologia , Feminino , Variação Genética , Humanos , Metarhizium/genética , Metarhizium/patogenicidade , Metarhizium/fisiologia , Fungos Mitospóricos/genética , Fungos Mitospóricos/patogenicidade , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Carrapatos/fisiologia , Virulência
20.
Vet Parasitol ; 182(2-4): 307-18, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21705145

RESUMO

Entomopathogenic fungi have been investigated worldwide as promising biological control agents of the cattle tick Rhipicephalus microplus. The current study evaluates the virulence of several fungal isolates to R. microplus larva in the laboratory as part of an effort to identify isolates with promise for effective biocontrol of R. microplus in the field. Sixty fungal isolates, encompassing 5 Beauveria spp. and 1 Engyodontium albus (=Beauveria alba), were included in this study. In addition to bioassays, the isolates were characterized morphologically and investigated as to their potential for conidial mass production. These findings were correlated with previous reports on the same fungal isolates of their natural UV-B tolerance (Fernandes et al., 2007), thermotolerance and cold activity (Fernandes et al., 2008), and genotypes (Fernandes et al., 2009). R. microplus larvae obtained from artificially infested calves were less susceptible to Beauveria bassiana infection than ticks acquired from naturally infested cattle from a different location. Isolates CG 464, CG 500 and CG 206 were among the most virulent Beauveria isolates tested in this study. All fungal isolates presented morphological features consistent with their species descriptions. Of the 53 B. bassiana isolates, five (CG 481, CG 484, CG 206, CG 235 and CG 487) had characteristics that qualified them as promising candidates for biological control agents of R. microplus, viz., mean LC(50) between 10(7) and 10(8)conidiaml(-1); produced 5000 conidia or more on 60mm(2) surface area of PDAY medium; and, in comparison to untreated (control) conidia, had the best conidial tolerances to UV-B (7.04 kJ m(-2)) and heat (45°C, 2h) of 50% or higher, and conidial cold (5°C, 15d) activity (mycelial growth) higher than 60%. The current study of 60 Beauveria spp. isolates, therefore, singles out a few (five) with high potential for controlling ticks under field conditions.


Assuntos
Beauveria/fisiologia , Controle Biológico de Vetores/métodos , Rhipicephalus/microbiologia , Animais , Interações Hospedeiro-Patógeno , Larva/microbiologia , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...