Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36242807

RESUMO

Routine immunoassays for insulin and C-peptide have the potential to cross-react with partially processed proinsulin products, although in healthy patients these are present at such low levels that the interference is insignificant. Elevated concentrations of proinsulin and des-31,32 proinsulin arising from pathological conditions, or injected insulin analogues, however can cause significant assay interferences, complicating interpretation. Clinical diagnosis and management therefore sometimes require methods that can distinguish true insulin and C-peptide from partially processed proinsulin or injected insulin analogues. In this scenario, the high specificity of mass spectrometric analysis offers potential benefit for patient care. A high throughput targeted LC-MS/MS method was developed as a fit for purpose investigation of insulin, insulin analogues, C-peptide and proinsulin processing intermediates in plasma samples from different patient groups. Using calibration standards and bovine insulin as an internal standard, absolute concentrations of insulin and C-peptide were quantified across a nominal human plasma postprandial range and correlated strongly with immunoassay-based measurements. The ability to distinguish between insulin, insulin analogues and proinsulin intermediates in a single extraction is an improvement over existing immunological based techniques, offering the advantage of exact identification of the species being measured. The method promises to aid in the detection of circulating peptides which have previously been overlooked but may interfere with standard insulin and C-peptide immunoassays.


Assuntos
Células Secretoras de Insulina , Proinsulina , Humanos , Bovinos , Animais , Peptídeo C , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem , Insulina , Peptídeos
2.
Peptides ; 140: 170532, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744371

RESUMO

OBJECTIVES: To analyse the peptidomics of mouse enteroendocrine cells (EECs) and human gastrointestinal (GI) tissue and identify novel gut derived peptides. METHODS: High resolution nano-flow liquid chromatography mass spectrometry (LC-MS/MS) was performed on (i) flow-cytometry purified NeuroD1 positive cells from mouse and homogenised human intestinal biopsies, (ii) supernatants from primary murine intestinal cultures, (iii) intestinal homogenates from mice fed high fat diet. Candidate bioactive peptides were selected on the basis of species conservation, high expression/biosynthesis in EECs and evidence of regulated secretionin vitro. Candidate novel gut-derived peptides were chronically administered to mice to assess effects on food intake and glucose tolerance. RESULTS: A large number of peptide fragments were identified from human and mouse, including known full-length gut hormones and enzymatic degradation products. EEC-specific peptides were largely from vesicular proteins, particularly prohormones, granins and processing enzymes, of which several exhibited regulated secretion in vitro. No regulated peptides were identified from previously unknown genes. High fat feeding particularly affected the distal colon, resulting in reduced peptide levels from GCG, PYY and INSL5. Of the two candidate novel peptides tested in vivo, a peptide from Chromogranin A (ChgA 435-462a) had no measurable effect, but a progastrin-derived peptide (Gast p59-79), modestly improved glucose tolerance in lean mice. CONCLUSION: LC-MS/MS peptidomic analysis of murine EECs and human GI tissue identified the spectrum of peptides produced by EECs, including a potential novel gut hormone, Gast p59-79, with minor effects on glucose tolerance.


Assuntos
Células Enteroendócrinas/metabolismo , Gastrinas/farmacologia , Trato Gastrointestinal/metabolismo , Teste de Tolerância a Glucose/métodos , Peptídeos/metabolismo , Precursores de Proteínas/farmacologia , Proteoma/metabolismo , Magreza/tratamento farmacológico , Animais , Células Cultivadas , Glucose/metabolismo , Humanos , Masculino , Camundongos , Modelos Animais , Peptídeos/química , Proteoma/análise , Magreza/metabolismo
4.
Sci Rep ; 9(1): 15574, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666564

RESUMO

Guanylin, a peptide implicated in regulation of intestinal fluid secretion, is expressed in the mucosa, but the exact cellular origin remains controversial. In a new transgenic mouse model fluorescent reporter protein expression driven by the proguanylin promoter was observed throughout the small intestine and colon in goblet and Paneth(-like) cells and, except in duodenum, in mature enterocytes. In Ussing chamber experiments employing both human and mouse intestinal tissue, proguanylin was released predominantly in the luminal direction. Measurements of proguanylin expression and secretion in cell lines and organoids indicated that secretion is largely constitutive and requires ER to Golgi transport but was not acutely regulated by salt or other stimuli. Using a newly-developed proguanylin assay, we found plasma levels to be raised in humans after total gastrectomy or intestinal transplantation, but largely unresponsive to nutrient ingestion. By LC-MS/MS we identified processed forms in tissue and luminal extracts, but in plasma we only detected full-length proguanylin. Our transgenic approach provides information about the cellular origins of proguanylin, complementing previous immunohistochemical and in-situ hybridisation results. The identification of processed forms of proguanylin in the intestinal lumen but not in plasma supports the notion that the primary site of action is the gut itself.


Assuntos
Hormônios Gastrointestinais/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Precursores de Proteínas/metabolismo , Hormônios Gastrointestinais/sangue , Humanos , Peptídeos Natriuréticos/metabolismo , Precursores de Proteínas/sangue
5.
Diabetes ; 68(5): 1062-1072, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30733330

RESUMO

Enteroendocrine cells (EECs) produce hormones such as glucagon-like peptide 1 and peptide YY that regulate food absorption, insulin secretion, and appetite. Based on the success of glucagon-like peptide 1-based therapies for type 2 diabetes and obesity, EECs are themselves the focus of drug discovery programs to enhance gut hormone secretion. The aim of this study was to identify the transcriptome and peptidome of human EECs and to provide a cross-species comparison between humans and mice. By RNA sequencing of human EECs purified by flow cytometry after cell fixation and staining, we present a first transcriptomic analysis of human EEC populations and demonstrate a strong correlation with murine counterparts. RNA sequencing was deep enough to enable identification of low-abundance transcripts such as G-protein-coupled receptors and ion channels, revealing expression in human EECs of G-protein-coupled receptors previously found to play roles in postprandial nutrient detection. With liquid chromatography-tandem mass spectrometry, we profiled the gradients of peptide hormones along the human and mouse gut, including their sequences and posttranslational modifications. The transcriptomic and peptidomic profiles of human and mouse EECs and cross-species comparison will be valuable tools for drug discovery programs and for understanding human metabolism and the endocrine impacts of bariatric surgery.


Assuntos
Diabetes Mellitus Tipo 2 , Transcriptoma , Animais , Células Enteroendócrinas , Peptídeo 1 Semelhante ao Glucagon , Humanos , Camundongos , Receptores Acoplados a Proteínas G
6.
Cell Rep ; 26(6): 1399-1408.e6, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726726

RESUMO

Bariatric surgery is widely used to treat obesity and improves type 2 diabetes beyond expectations from the degree of weight loss. Elevated post-prandial concentrations of glucagon-like peptide 1 (GLP-1), peptide YY (PYY), and insulin are widely reported, but the importance of GLP-1 in post-bariatric physiology remains debated. Here, we show that GLP-1 is a major driver of insulin secretion after bariatric surgery, as demonstrated by blocking GLP-1 receptors (GLP1Rs) post-gastrectomy in lean humans using Exendin-9 or in mice using an anti-GLP1R antibody. Transcriptomics and peptidomics analyses revealed that human and mouse enteroendocrine cells were unaltered post-surgery; instead, we found that elevated plasma GLP-1 and PYY correlated with increased nutrient delivery to the distal gut in mice. We conclude that increased GLP-1 secretion after bariatric surgery arises from rapid nutrient delivery to the distal gut and is a key driver of enhanced insulin secretion.


Assuntos
Cirurgia Bariátrica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Homeostase , Obesidade/metabolismo , Adulto , Animais , Células Enteroendócrinas/metabolismo , Feminino , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Secreção de Insulina , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Obesidade/cirurgia , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/uso terapêutico , Peptídeo YY/metabolismo , Período Pós-Operatório , Transcriptoma
7.
Cell Metab ; 29(3): 707-718.e8, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30639358

RESUMO

GDF15 is an established biomarker of cellular stress. The fact that it signals via a specific hindbrain receptor, GFRAL, and that mice lacking GDF15 manifest diet-induced obesity suggest that GDF15 may play a physiological role in energy balance. We performed experiments in humans, mice, and cells to determine if and how nutritional perturbations modify GDF15 expression. Circulating GDF15 levels manifest very modest changes in response to moderate caloric surpluses or deficits in mice or humans, differentiating it from classical intestinally derived satiety hormones and leptin. However, GDF15 levels do increase following sustained high-fat feeding or dietary amino acid imbalance in mice. We demonstrate that GDF15 expression is regulated by the integrated stress response and is induced in selected tissues in mice in these settings. Finally, we show that pharmacological GDF15 administration to mice can trigger conditioned taste aversion, suggesting that GDF15 may induce an aversive response to nutritional stress.


Assuntos
Ingestão de Energia/fisiologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Adulto , Animais , Linhagem Celular , Dieta Hiperlipídica/métodos , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
8.
Rapid Commun Mass Spectrom ; 32(16): 1414-1424, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29857350

RESUMO

RATIONALE: Diagnosis of pancreatic neuroendocrine tumours requires the study of patient plasma with multiple immunoassays, using multiple aliquots of plasma. The application of mass spectrometry based techniques could reduce the cost and amount of plasma required for diagnosis. METHODS: Plasma samples from two patients with pancreatic neuroendocrine tumours were extracted using an established acetonitrile-based plasma peptide enrichment strategy. The circulating peptidome was characterised using nano and high flow rate liquid chromatography/mass spectrometry (LC/MS) analyses. To assess the diagnostic potential of the analytical approach, a large sample batch (68 plasmas) from control subjects, and aliquots from subjects harbouring two different types of pancreatic neuroendocrine tumour (insulinoma and glucagonoma), were analysed using a 10-min LC/MS peptide screen. RESULTS: The untargeted plasma peptidomics approach identified peptides derived from the glucagon prohormone, chromogranin A, chromogranin B and other peptide hormones and proteins related to control of peptide secretion. The glucagon prohormone derived peptides that were detected were compared against putative peptides that were identified using multiple antibody pairs against glucagon peptides. Comparison of the plasma samples for relative levels of selected peptides showed clear separation between the glucagonoma and the insulinoma and control samples. CONCLUSIONS: The combination of the organic solvent extraction methodology with high flow rate analysis could potentially be used to aid diagnosis and monitor treatment of patients with functioning pancreatic neuroendocrine tumours. However, significant validation will be required before this approach can be clinically applied.


Assuntos
Cromograninas/sangue , Tumores Neuroendócrinos/sangue , Neoplasias Pancreáticas/sangue , Hormônios Peptídicos/sangue , Adulto , Cromograninas/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanotecnologia , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/metabolismo , Hormônios Peptídicos/química , Proteômica , Adulto Jovem
9.
Surg Obes Relat Dis ; 14(5): 562-568, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29548882

RESUMO

BACKGROUND: Altered enteroendocrine hormone responses are widely believed to underlie the beneficial effects of bariatric surgery in type 2 diabetes. While elevated postprandial glucagon-like peptide-1 (GLP-1) is considered one of the mediators, increased postprandial glucagon levels have recently been implicated. OBJECTIVES: We investigated hormonal responses in lean patients after prophylactic total gastrectomy (PTG), as a model of Roux-en-Y gastric bypass without the confounding effects of obesity or massive weight loss. SETTING: University hospital, United Kingdom. METHODS: Ten participants after PTG and 9 healthy volunteers were recruited for oral glucose tolerance tests. Plasma glucose, insulin, GLP-1, peptide YY, glucose-dependent insulinotropic-polypeptide, glucagon, oxyntomodulin, glucagon(1-61), and glicentin levels were assessed using immunoassays and/or mass spectrometry. RESULTS: PTG participants exhibited accelerated plasma glucose appearance, followed, in 3 of 10 cases, by hypoglycemia (<3 mM glucose). Plasma GLP-1, peptide YY, glucose-dependent insulinotropic-polypeptide, glicentin, and oxyntomodulin responses were elevated, and glucagon appeared to rise in PTG participants when measured with a glucagon-specific enzyme-linked immunosorbent assay. We revisited the specificity of this assay, and demonstrated significant cross-reactivity with glicentin and oxyntomodulin at concentrations observed in PTG plasma. Reassessment of glucagon with the same assay using a modified protocol, and by liquid chromatography-mass spectrometry, demonstrated suppression of glucagon secretion after oral glucose tolerance tests in both PTG and control cohorts. CONCLUSIONS: Care should be taken when assessing glucagon levels in the presence of elevated plasma levels of other proglucagon products. Substantial elevation of GLP-1 and insulin responses after PTG likely contribute to the observed hypoglycemia, and mirror similar hormone levels and complications observed in bariatric weight loss patients.


Assuntos
Cirurgia Bariátrica/métodos , Gastrectomia/métodos , Magreza/cirurgia , Adulto , Glicemia/metabolismo , Estudos de Casos e Controles , Feminino , Derivação Gástrica/métodos , Polipeptídeo Inibidor Gástrico/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Humanos , Hipoglicemia , Insulina/metabolismo , Masculino , Peptídeo YY/metabolismo , Proglucagon/metabolismo , Magreza/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...