Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36983888

RESUMO

We propose a theoretical basis for analyzing several features of genetic diseases caused by dominant alleles, including: disease prevalence, genotype penetrance, and the relationship between causal genotype frequency and disease frequency. In addition, we provide a theoretical framework for accurate diagnosis and clinical approaches for disease study, including two examples in which inaccurate and incomplete diagnoses affect the estimates of disease prevalence: First, the disease iceberg effect shows that disease prevalence is often underestimated due to errors introduced by inaccurate diagnosis; second, because lifetime risk of disease is cumulative, and therefore an increasing function of age, measurements of prevalence are inaccurate if people of all ages are not included. Finally, we discuss the aggregation of genetic diseases. We identify theoretical and computational deficiencies associated with using the sibling recurrence-risk ratio as a measure of familial aggregation. We develop an alternative concept of aggregation and propose an associated measure that does not experience the deficiencies. Throughout, we provide clinicians and researchers practical implications of our theoretical framework.

2.
Physiol Biochem Zool ; 84(1): 111-4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21162672

RESUMO

Our recent article (Roberts et al. 2010 ) proposes a mechanistic model for the relation between basal metabolic rate (BMR) and body mass (M) in mammals. The model is based on heat-transfer principles in the form of an equation for distributed heat generation within the body. The model can also be written in the form of the allometric equation BMR = aM(b), in which a is the coefficient of the mass term and b is the allometric exponent. The model generates two interesting results: it predicts that b takes the value 2/3, indicating that BMR is proportional to surface area in endotherms. It also provides an explanation of the physiological components that make up a, that is, respiratory heat loss, core-skin thermal conductance, and core-skin thermal gradient. Some of the ideas in our article have been questioned (Seymour and White 2011 ), and this is our response to those questions. We specifically address the following points: whether a heat-transfer model can explain the level of BMR in mammals, whether our test of the model is inadequate because it uses the same literature data that generated the values of the physiological variables, and whether geometry and empirical values combine to make a "coincidence" that makes the model only appear to conform to real processes.


Assuntos
Metabolismo Basal , Tamanho Corporal/fisiologia , Mamíferos/fisiologia , Modelos Biológicos , Animais , Biofísica , Regulação da Temperatura Corporal
3.
Physiol Biochem Zool ; 83(3): 395-405, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20367321

RESUMO

The allometric 3/4 power relation, initially used for describing the relation between mammalian basal metabolic rate and body size, is often used as a general model for organismal design. The use of allometric regression as a model has important limitations: it is not mechanistic, it combines all physiological variables into one correlate of body size, and it combines data from several physiological states. In reassessing the use of allometric equations, we first describe problems with their use in studies of organismal design and then use a formulation for distributed net heat production and temperature distribution within the body to derive an alternative equation for the relation between basal metabolism and body size. Tests of the heat flow equation against data reported in the literature indicate that it is an accurate estimator of basal metabolism under thermoneutral conditions and suggest that the allometric equation is a special case of this mechanistic and more general model. We propose that our method is more meaningful and widely applicable for thermoneutral conditions than is a purely allometric approach.


Assuntos
Tamanho Corporal/fisiologia , Metabolismo Energético/fisiologia , Modelos Biológicos , Animais , Regulação da Temperatura Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...