Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 42(1): 89-97, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24450633

RESUMO

The second messenger cAMP plays a central role in mediating vascular smooth muscle relaxation in response to vasoactive transmitters and in strengthening endothelial cell-cell junctions that regulate the movement of solutes, cells and macromolecules between the blood and the surrounding tissue. The vasculature expresses three cAMP effector proteins: PKA (protein kinase A), CNG (cyclic-nucleotide-gated) ion channels, and the most recently discovered Epacs (exchange proteins directly activated by cAMP). Epacs are a family of GEFs (guanine-nucleotide-exchange factors) for the small Ras-related GTPases Rap1 and Rap2, and are being increasingly implicated as important mediators of cAMP signalling, both in their own right and in parallel with the prototypical cAMP target PKA. In the present paper, we review what is currently known about the role of Epac within blood vessels, particularly with regard to the regulation of vascular tone, endothelial barrier function and inflammation.


Assuntos
Vasos Sanguíneos/fisiologia , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Animais , Permeabilidade Capilar , Adesão Celular , Movimento Celular , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Hemodinâmica , Humanos , Sistemas do Segundo Mensageiro
2.
J Physiol ; 591(20): 5107-23, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23959673

RESUMO

Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2-O-Me-cAMP-AM (5 µM, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n = 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K(+) over the same time period (n = 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca(2+)-sensitive, large-conductance K(+) (BK(Ca)) channel opening as iberiotoxin (100 nM) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n = 5; P < 0.05). 8-pCPT-AM increased Ca(2+) spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s(-1) µm(-1) (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s(-1)) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n = 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nM) and to ryanodine (30 µM). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n = 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n = 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n = 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca(2+)-sensitive, small- and intermediate-conductance K(+) (SK(Ca) and IK(Ca)) channels, respectively, and N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase (NOS). In Fluo-4-AM-loaded mesenteric endothelial cells, 8-pCPT-AM induced a sustained increase in global Ca(2+). Our data suggest that Epac hyperpolarizes smooth muscle by (1) increasing localized Ca(2+) release from ryanodine receptors (Ca(2+) sparks) to activate BK(Ca) channels, and (2) endothelial-dependent mechanisms involving the activation of SK(Ca)/IK(Ca) channels and NOS. Epac-mediated smooth muscle hyperpolarization will limit Ca(2+) entry via voltage-sensitive Ca(2+) channels and represents a novel mechanism of arterial relaxation.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Artérias Mesentéricas/metabolismo , Células Musculares/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Vasodilatação , Potenciais de Ação , Animais , Apamina/farmacologia , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Fatores de Troca do Nucleotídeo Guanina/agonistas , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/fisiologia , Células Musculares/efeitos dos fármacos , Células Musculares/fisiologia , Contração Muscular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Peptídeos/farmacologia , Potássio/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/agonistas , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Pirazóis/farmacologia , Ratos , Ratos Wistar
3.
J Cell Sci ; 123(Pt 18): 3189-200, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20736307

RESUMO

Extracellular signal-regulated kinase 5 (ERK5) is activated in response to environmental stress and growth factors. Gene ablation of Erk5 in mice is embryonically lethal as a result of disruption of cardiovascular development and vascular integrity. We investigated vascular endothelial growth factor (VEGF)-mediated ERK5 activation in primary human dermal microvascular endothelial cells (HDMECs) undergoing proliferation on a gelatin matrix, and tubular morphogenesis within a collagen gel matrix. VEGF induced sustained ERK5 activation on both matrices. However, manipulation of ERK5 activity by siRNA-mediated gene silencing disrupted tubular morphogenesis without impacting proliferation. Overexpression of constitutively active MEK5 and ERK5 stimulated tubular morphogenesis in the absence of VEGF. Analysis of intracellular signalling revealed that ERK5 regulated AKT phosphorylation. On a collagen gel, ERK5 regulated VEGF-mediated phosphorylation of the pro-apoptotic protein BAD and increased expression of the anti-apoptotic protein BCL2, resulting in decreased caspase-3 activity and apoptosis suppression. Our findings suggest that ERK5 is required for AKT phosphorylation and cell survival and is crucial for endothelial cell differentiation in response to VEGF.


Assuntos
Células Endoteliais/enzimologia , Microvasos/enzimologia , Microvasos/crescimento & desenvolvimento , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Derme/irrigação sanguínea , Derme/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Camundongos , Microvasos/citologia , Microvasos/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Neovascularização Fisiológica
4.
Biochem Soc Trans ; 37(Pt 6): 1254-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19909257

RESUMO

ERK5 (extracellular-signal-regulated kinase 5), also termed BMK1 [big MAPK1 (mitogen-activated protein kinase 1)], is the most recently discovered member of the MAPK family. It is expressed in a variety of tissues and is activated by a range of growth factors, cytokines and cellular stresses. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade is critical for normal cardiovascular development and vascular integrity. In vitro studies have revealed that in endothelial cells, ERK5 is required for preventing apoptosis, mediating shear-stress signalling, regulating hypoxia, tumour angiogenesis and cell migration. This review focuses on our current understanding of the role of ERK5 in regulating endothelial cell function.


Assuntos
Células Endoteliais/fisiologia , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Animais , Movimento Celular/fisiologia , Ativação Enzimática , Humanos , Hipóxia/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...