Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 37(2): 285-302, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34747055

RESUMO

Hallmarks of aging-associated osteoporosis include bone loss, bone marrow adipose tissue (BMAT) expansion, and impaired osteoblast function. Endogenous glucocorticoid levels increase with age, and elevated glucocorticoid signaling, associated with chronic stress and dysregulated metabolism, can have a deleterious effect on bone mass. Canonical glucocorticoid signaling through the glucocorticoid receptor (GR) was recently investigated as a mediator of osteoporosis during the stress of chronic caloric restriction. To address the role of the GR in an aging-associated osteoporotic phenotype, the current study utilized female GR conditional knockout (GR-CKO; GRfl/fl :Osx-Cre+) mice and control littermates on the C57BL/6 background aged to 21 months and studied in comparison to young (3- and 6-month-old) mice. GR deficiency in Osx-expressing cells led to low bone mass and BMAT accumulation that persisted with aging. Surprisingly, however, GR-CKO mice also exhibited alterations in muscle mass (reduced % lean mass and soleus fiber size), accompanied by reduced voluntary physical activity, and also exhibited higher whole-body metabolic rate and elevated blood pressure. Moreover, increased lipid storage was observed in GR-CKO osteoblastic cultures in a glucocorticoid-dependent fashion despite genetic deletion of the GR, and could be reversed via pharmacological inhibition of the mineralocorticoid receptor (MR). These findings provide evidence of a role for the GR (and possibly the MR) in facilitating healthy bone maintenance with aging in females. The effects of GR-deficient bone on whole-body physiology also demonstrate the importance of bone as an endocrine organ and suggest evidence for compensatory mechanisms that facilitate glucocorticoid signaling in the absence of osteoblastic GR function; these represent new avenues of research that may improve understanding of glucocorticoid signaling in bone toward the development of novel osteogenic agents. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Medula Óssea , Receptores de Glucocorticoides , Tecido Adiposo/metabolismo , Envelhecimento , Animais , Medula Óssea/metabolismo , Feminino , Glucocorticoides/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Receptores de Glucocorticoides/metabolismo
2.
Front Cell Dev Biol ; 8: 354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509782

RESUMO

Senescence is a cellular defense mechanism that helps cells prevent acquired damage, but chronic senescence, as in aging, can contribute to the development of age-related tissue dysfunction and disease. Previous studies clearly show that removal of senescent cells can help prevent tissue dysfunction and extend healthspan during aging. Senescence increases with age in the skeletal system, and selective depletion of senescent cells or inhibition of their senescence-associated secretory phenotype (SASP) has been reported to maintain or improve bone mass in aged mice. This suggests that promoting the selective removal of senescent cells, via the use of senolytic agents, can be beneficial in the treatment of aging-related bone loss and osteoporosis. Navitoclax (also known as ABT-263) is a chemotherapeutic drug reported to effectively clear senescent hematopoietic stem cells, muscle stem cells, and mesenchymal stromal cells in previous studies, but its in vivo effects on bone mass had not yet been reported. Therefore, the purpose of this study was to assess the effects of short-term navitoclax treatment on bone mass and osteoprogenitor function in old mice. Aged (24 month old) male and female mice were treated with navitoclax (50 mg/kg body mass daily) for 2 weeks. Surprisingly, despite decreasing senescent cell burden, navitoclax treatment decreased trabecular bone volume fraction in aged female and male mice (-60.1% females, -45.6% males), and BMSC-derived osteoblasts from the navitoclax treated mice were impaired in their ability to produce a mineralized matrix (-88% females, -83% males). Moreover, in vitro administration of navitoclax decreased BMSC colony formation and calcified matrix production by aged BMSC-derived osteoblasts, similar to effects seen with the primary BMSC from the animals treated in vivo. Navitoclax also significantly increased metrics of cytotoxicity in both male and female osteogenic cultures (+1.0 to +11.3 fold). Taken together, these results suggest a potentially harmful effect of navitoclax on skeletal-lineage cells that should be explored further to definitively assess navitoclax's potential (or risk) as a therapeutic agent for combatting age-related musculoskeletal dysfunction and bone loss.

3.
Exp Gerontol ; 130: 110818, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31862422

RESUMO

Aging is a progressive process associated with declining tissue function over time. Kynurenine, an oxidized metabolite of the essential amino acid tryptophan that increases in abundance with age, drives cellular processes of aging and dysfunction in many tissues, and recent work has focused on understanding the pathways involved in the harmful effects of kynurenine on bone. In this study, we sought to investigate the effects of controlled kynurenine administration on osteoblast bioenergetics, in vivo osteoblast abundance, and marrow fat accumulation. Additionally, as an extension of earlier studies with dietary administration of kynurenine, we investigated the effects of kynurenine on Hdac3 and NCoR1 expression and enzymatic deacetylase activity as potential mechanistic contributors to the effects of kynurenine on osteoblasts. Kynurenine administration suppressed cellular metabolism in osteoblasts at least in part through impaired mitochondrial respiration, and suppressed osteoblastic numbers in vivo with no concurrent effects on marrow adiposity. Deleterious effects of kynurenine treatment on osteoblasts were more pronounced in female models as compared to males. However, kynurenine treatment did not inhibit Hdac3's enzymatic deacetylase activity nor its repression of downstream glucocorticoid signaling. As such, future work will be necessary to determine the mechanisms by which increased kynurenine contributes to aging bone bioenergetics. The current study provides novel further support for the idea that kynurenine contributes to impaired osteoblastic function, and suggests that impaired matrix production by kynurenine-affected osteoblasts is attributed in part to impaired osteoblastic bioenergetics. As circulating kynurenine levels in increase with age, and human bone density inversely correlates with the serum kynurenine to tryptophan ratio, these mechanisms may have important relevance in the etiology and pathogenesis of osteoporosis in humans.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cinurenina/metabolismo , Osteoblastos/metabolismo , Envelhecimento/metabolismo , Animais , Densidade Óssea , Osso e Ossos/metabolismo , Feminino , Histona Desacetilases , Masculino , Camundongos , Osteoporose/metabolismo , Caracteres Sexuais , Triptofano
4.
Aging Cell ; 19(1): e13056, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743583

RESUMO

Transient plasma membrane disruptions (PMD) occur in osteocytes with in vitro and in vivo loading, initiating mechanotransduction. The goal here was to determine whether osteocyte PMD formation or repair is affected by aging. Osteocytes from old (24 months) mice developed fewer PMD (-76% females, -54% males) from fluid shear than young (3 months) mice, and old mice developed fewer osteocyte PMD (-51%) during treadmill running. This was due at least in part to decreased pericellular matrix production, as studies revealed that pericellular matrix is integral to formation of osteocyte PMD, and aged osteocytes produced less pericellular matrix (-55%). Surprisingly, osteocyte PMD repair rate was faster (+25% females, +26% males) in osteocytes from old mice, and calcium wave propagation to adjacent nonwounded osteocytes was blunted, consistent with impaired mechanotransduction downstream of PMD in osteocytes with fast PMD repair in previous studies. Inducing PMD via fluid flow in young osteocytes in the presence of oxidative stress decreased postwounding cell survival and promoted accelerated PMD repair in surviving cells, suggesting selective loss of slower-repairing osteocytes. Therefore, as oxidative stress increases during aging, slower-repairing osteocytes may be unable to successfully repair PMD, leading to slower-repairing osteocyte death in favor of faster-repairing osteocyte survival. Since PMD are an important initiator of mechanotransduction, age-related decreases in pericellular matrix and loss of slower-repairing osteocytes may impair the ability of bone to properly respond to mechanical loading with bone formation. These data suggest that PMD formation and repair mechanisms represent new targets for improving bone mechanosensitivity with aging.


Assuntos
Membrana Celular/metabolismo , Mecanotransdução Celular/fisiologia , Osteócitos/metabolismo , Envelhecimento , Animais , Feminino , Humanos , Masculino , Camundongos
5.
J Neurosci ; 40(1): 143-158, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31685652

RESUMO

Down syndrome cell adhesion molecules (dscam and dscaml1) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), whereas abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders.SIGNIFICANCE STATEMENTDscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders.


Assuntos
Movimentos Oculares/fisiologia , Adaptação Ocular/genética , Adaptação Ocular/fisiologia , Células Amácrinas/fisiologia , Animais , Animais Geneticamente Modificados , Sinalização do Cálcio , Moléculas de Adesão Celular/fisiologia , Movimentos Oculares/genética , Fixação Ocular/genética , Fixação Ocular/fisiologia , Larva , Locomoção , Fadiga Muscular , Mutação , Músculos Oculomotores/crescimento & desenvolvimento , Músculos Oculomotores/fisiopatologia , Retina/crescimento & desenvolvimento , Retina/ultraestrutura , Movimentos Sacádicos/genética , Movimentos Sacádicos/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/fisiologia
6.
J S C Acad Sci ; 15(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29950952

RESUMO

Zebrafish are a highly-valued model organism used for developmental biology research. Zebrafish can be used for genetic manipulation and hence, many mutant and transgenic lines exist. It is impractical to maintain lines of adult zebrafish, due to resource constraints and the need to continuously produce new generations. Therefore, a practical way to preserve zebrafish lines is to freeze sperm and retrieve lines using in vitro fertilization of fresh eggs. Most existing in vitro protocols used by research labs have a wide variety of fertilization rates (ranging from 0% to >90%). Due to this variability, lines may be at risk of not being regenerated, and may be permanently lost. For this project, aspects of existing published sperm collection protocols were tested and modified, with the goal of improving the proportion of males giving quality ejaculate. Males were tested for production of ejaculate by housing fish either in groups or in separate, individual tanks the night before sperm collection. The effect of age of male zebrafish and genetic background (5D and AB lines) on production of quality ejaculate was also tested. Isolating males before sperm collection significantly increased the proportion of individuals producing quality ejaculate. The proportion of fish that gave quality ejaculate samples did not co-vary with age between 17-68 weeks. Overall, AB fish were significantly more likely to give quality ejaculate samples compared to 5D fish. Based on this study, we strongly recommend separating male fish before sperm collection to improve the likelihood of obtaining samples. Our results indicate that AB fish give proportionately better samples than 5D fish, and this does not vary with age between 17-68 weeks.

7.
J Am Chem Soc ; 133(45): 18433-46, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21958078

RESUMO

A series of bimetallic ruthenium complexes [{Ru(dppe)Cp*}(2)(µ-C≡CArC≡C)] featuring diethynylaromatic bridging ligands (Ar = 1,4-phenylene, 1,4-naphthylene, 9,10-anthrylene) have been prepared and some representative molecular structures determined. A combination of UV-vis-NIR and IR spectroelectrochemical methods and density functional theory (DFT) have been used to demonstrate that one-electron oxidation of compounds [{Ru(dppe)Cp*}(2)(µ-C≡CArC≡C)](HC≡CArC≡CH = 1,4-diethynylbenzene; 1,4-diethynyl-2,5-dimethoxybenzene; 1,4-diethynylnaphthalene; 9,10-diethynylanthracene) yields solutions containing radical cations that exhibit characteristics of both oxidation of the diethynylaromatic portion of the bridge, and a mixed-valence state. The simultaneous population of bridge-oxidized and mixed-valence states is likely related to a number of factors, including orientation of the plane of the aromatic portion of the bridging ligand with respect to the metal d-orbitals of appropriate π-symmetry.


Assuntos
Hidrocarbonetos Aromáticos/química , Compostos Organometálicos/química , Rutênio/química , Cátions/química , Radicais Livres/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
8.
Inorg Chem ; 48(8): 3562-72, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19298046

RESUMO

The syntheses of trans-[Ru(4,4'-C[triple bond]CC(6)H(4)C[triple bond]CC(6)H(4)NO(2))Cl(dppe)(2)] (19) and the systematically varied complexes trans-[Ru(4,4',4''-C[triple bond]CC(6)H(4)X(2)C(6)H(4)Y(2)C(6)H(4)NO(2))Cl(L(2))(2)] [L(2) = dppe, X(2) = C[triple bond]C, Y(2) = (E)-CH=CH (12), C[triple bond]C (18); L(2) = dppe, X(2) = (E)-CH=CH, Y(2) = C[triple bond]C (14), (E)-CH=CH (16); L(2) = dppm, X(2) = C[triple bond]C, Y(2) = (E)-CH=CH (13); L(2) = dppm, X(2) = (E)-CH=CH, Y(2) = C[triple bond]C (15), (E)-CH=CH (17)] are reported, the latter being donor-bridge-acceptor complexes varying in bridge composition by replacement of yne with E-ene linkages, together with their cyclic voltammetric data, linear optical, and quadratic nonlinear optical response data. Ru(II/III) oxidation potentials increase on replacing yne linkage by E-ene linkage at the phenylene adjacent to the metal center, and on replacing dppe by dppm co-ligands. The low-energy optical absorption maxima occur in the region 20,400-23,300 cm(-1) and are metal-to-ligand charge-transfer (MLCT) in origin; these bands undergo a blue-shift upon pi-bridge lengthening by addition of phenyleneethynylene units, and on replacing E-ene linkages by yne linkages. Time-dependent density functional theory calculations on model complexes have suggested assignments for the low-energy bands. The optical spectra of selected oxidized species contain low-energy ligand-to-metal charge transfer (LMCT) bands centered in the region 9760-11,800 cm(-1). Quadratic molecular nonlinearities from hyper-Rayleigh scattering (HRS) studies at 1064 nm reveal an increase in the two-level-corrected beta(0) value on pi-bridge lengthening, a trend that is not seen with beta values because of the blue-shift in lambda(max) for this structural modification. Replacing yne linkages by E-ene linkage at the phenylene adjacent to the metal center or dppm co-ligand by dppe results in an increase in beta and beta(0) values. In contrast, quadratic molecular nonlinearities by HRS at 1300 nm or electric field-induced second-harmonic generation (EFISH) studies at 1907 nm do not afford clear trends.


Assuntos
Alcinos/química , Éteres/química , Compostos Organometálicos/química , Rutênio/química , Compostos de Vinila/química , Modelos Químicos , Estrutura Molecular , Compostos Organometálicos/síntese química
9.
J Am Chem Soc ; 130(11): 3566-78, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18293977

RESUMO

The complexes [Ru(1-C[triple bond]C-1,10-C2B8H9)(dppe)Cp*] (3a), [Ru(1-C[triple bond]C-1,12-C2B10H11)(dppe)Cp*] (3b), [{Ru(dppe)Cp*}2{mu-1,10-(C[triple bond]C)2-1,10-C2B8H8}] (4a) and [{Ru(dppe)Cp*}2{mu-1,12-(C[triple bond]C)2-1,12-C2B10H10}] (4b), which form a representative series of mono- and bimetallic acetylide complexes featuring 10- and 12-vertex carboranes embedded within the diethynyl bridging ligand, have been prepared and structurally characterized. In addition, these compounds have been examined spectroscopically (UV-vis-NIR, IR) in all accessible redox states. The significant separation of the two, one-electron anodic waves observed in the cyclic voltammograms of the bimetallic complexes 4a and 4b is largely independent of the nature of the electrolyte and is attributed to stabilization of the intermediate redox products [4a]+ and [4b]+ through interactions between the metal centers across a distance of ca. 12.5 A. The mono-oxidized bimetallic complexes [4a]+ and [4b]+ exhibit spectroscopic properties consistent with a description of these species in terms of valence-localized (class II) mixed-valence compounds, including a unique low-energy electronic absorption band, attributed to an IVCT-type transition that tails into the IR region. DFT calculations with model systems [4a-H]+ and [4b-H]+ featuring simplified ligand sets reproduce the observed spectroscopic data and localized electronic structures for the mixed-valence cations [4a]+ and [4b]+.


Assuntos
Compostos de Boro/química , Modelos Químicos , Compostos Organometálicos/química , Rutênio/química , Cristalografia por Raios X , Eletroquímica , Elétrons , Ligantes , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Oxirredução , Espectrofotometria Infravermelho/métodos , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
10.
Dalton Trans ; (47): 6763-75, 2008 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19153624

RESUMO

Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) and RuCl(dppe)Cp' [Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C[triple bond, length as m-dash]CC(6)F(5))(dppe)Cp' [Cp' = Cp (); Cp* ()], which are related to the known compound Ru(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3))(2)Cp (). Treatment of Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) with Pt(2)(mu-dppm)(2)Cl(2) in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt(2)(mu-dppm)(2)(C[triple bond, length as m-dash]CC(6)F(5))(2) (). The Pd(0)/Cu(i)-catalysed reactions between Au(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3)) and Mo( identical withCBr)(CO)(2)Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co(3)(mu(3)-CBr)(mu-dppm)(CO)(7) or IC[triple bond, length as m-dash]CFc [Fc = (eta(5)-C(5)H(4))FeCp] afford Mo( identical withCC[triple bond, length as m-dash]CC(6)F(5))(CO)(2)Tp* (), Co(3)(mu(3)-CC[triple bond, length as m-dash]CC(6)F(5))(mu-dppm)(CO)(7) () and FcC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC(6)F(5) (), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)F(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()] are prepared from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)F(4) in a manner similar to that described for the monoruthenium complexes -. The non-fluorinated complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)H(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()], prepared for comparison, are obtained from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)H(4). Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes - and -, together with DFT-based computational studies on suitable model systems, indicate that perfluorination of the aromatic ring has little effect on the electronic structures of these compounds, and that the frontier orbitals have appreciable diethynylphenylene character. Molecular structure determinations are reported for the fluoroaromatic complexes , , , and .

11.
Dalton Trans ; (46): 5387-99, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18026587

RESUMO

The sequential conversion of [OsBr(cod)Cp*] (9) to [OsBr(dppe)Cp*] (10), [Os([=C=CH2)(dppe)Cp*]PF6 ([11]PF6), [Os(C triple bond CH)(dppe)Cp*] (12), [{Os(dppe)Cp*}2{mu-(=C=CH-CH=C=)}][PF6]2 ([13](PF6)2) and finally [{Os(dppe)Cp*}(2)(mu-C triple bond CC triple bond C)] (14) has been used to make the third member of the triad [{M(dppe)Cp*}2(mu-C triple bond CC triple bond C)] (M = Fe, Ru, Os). The molecular structures of []PF6, 12 and 14, together with those of the related osmium complexes [Os(NCMe)(dppe)Cp*]PF6 ([15]PF6) and [Os(C triple bond CPh)(dppe)Cp*] (16), have been determined by single-crystal X-ray diffraction studies. Comparison of the redox properties of 14 with those of its iron and ruthenium congeners shows that the first oxidation potential E1 varies as: Fe approximately Os < Ru. Whereas the Fe complex has been shown to undergo three sequential 1-electron oxidation processes within conventional electrochemical solvent windows, the Ru and Os compounds undergo no fewer than four sequential oxidation events giving rise to a five-membered series of redox related complexes [{M(dppe)Cp*}2(mu-C4)]n+ (n = 0, 1, 2, 3 and 4), the osmium derivatives being obtained at considerably lower potentials than the ruthenium analogues. These results are complimented by DFT and DT DFT calculations.

12.
Inorg Chem ; 44(9): 3261-9, 2005 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-15847435

RESUMO

Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...