Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(6): 461-473.e7, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36905926

RESUMO

Organ development involves the sustained production of diverse cell types with spatiotemporal precision. In the vertebrate jaw, neural-crest-derived progenitors produce not only skeletal tissues but also later-forming tendons and salivary glands. Here we identify the pluripotency factor Nr5a2 as essential for cell-fate decisions in the jaw. In zebrafish and mice, we observe transient expression of Nr5a2 in a subset of mandibular postmigratory neural-crest-derived cells. In zebrafish nr5a2 mutants, nr5a2-expressing cells that would normally form tendons generate excess jaw cartilage. In mice, neural-crest-specific Nr5a2 loss results in analogous skeletal and tendon defects in the jaw and middle ear, as well as salivary gland loss. Single-cell profiling shows that Nr5a2, distinct from its roles in pluripotency, promotes jaw-specific chromatin accessibility and gene expression that is essential for tendon and gland fates. Thus, repurposing of Nr5a2 promotes connective tissue fates to generate the full repertoire of derivatives required for jaw and middle ear function.


Assuntos
Receptores Citoplasmáticos e Nucleares , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Diferenciação Celular/fisiologia , Tecido Conjuntivo/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Crista Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
2.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33913478

RESUMO

Tendons and ligaments are fibrous connective tissues vital to the transmission of force and stabilization of the musculoskeletal system. Arising in precise regions of the embryo, tendons and ligaments share many properties and little is known about the molecular differences that differentiate them. Recent studies have revealed heterogeneity and plasticity within tendon and ligament cells, raising questions regarding the developmental mechanisms regulating tendon and ligament identity. Here, we discuss recent findings that contribute to our understanding of the mechanisms that establish and maintain tendon progenitors and their differentiated progeny in the head, trunk and limb. We also review the extent to which these findings are specific to certain anatomical regions and model organisms, and indicate which findings similarly apply to ligaments. Finally, we address current research regarding the cellular lineages that contribute to tendon and ligament repair, and to what extent their regulation is conserved within tendon and ligament development.


Assuntos
Diferenciação Celular , Ligamentos/embriologia , Desenvolvimento Musculoesquelético , Células-Tronco/metabolismo , Tendões/embriologia , Animais , Humanos , Ligamentos/citologia , Células-Tronco/citologia , Tendões/citologia
3.
Development ; 146(15)2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31320326

RESUMO

Tendon and bone are attached by a transitional connective tissue that is morphologically graded from tendinous to osseous and develops from bipotent progenitors that co-express scleraxis (Scx) and Sox9 (Scx+/Sox9+). Scx+/Sox9+ progenitors have the potential to differentiate into either tenocytes or chondrocytes, yet the developmental mechanism that spatially resolves their bipotency at the tendon-bone interface during embryogenesis remains unknown. Here, we demonstrate that development of Scx+/Sox9+ progenitors within the mammalian lower jaw requires FGF signaling. We find that loss of Fgfr2 in the mouse tendon-bone interface reduces Scx expression in Scx+/Sox9+ progenitors and induces their biased differentiation into Sox9+ chondrocytes. This expansion of Sox9+ chondrocytes, which is concomitant with decreased Notch2-Dll1 signaling, prevents formation of a mixed population of chondrocytes and tenocytes, and instead results in ectopic endochondral bone at tendon-bone attachment units. Our work shows that FGF signaling directs zonal patterning at the boundary between tendon and bone by regulating cell fate decisions through a mechanism that employs Notch signaling.


Assuntos
Osso e Ossos/metabolismo , Condrócitos/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Tendões/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Osso e Ossos/citologia , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Arcada Osseodentária/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Tendões/citologia , Tenócitos/citologia
4.
Dev Dyn ; 248(3): 233-246, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30620790

RESUMO

BACKGROUND: Bent bone dysplasia syndrome (BBDS), a congenital skeletal disorder caused by dominant mutations in fibroblast growth factor receptor 2 (FGFR2), is characterized by bowed long bones within the limbs. We previously showed that the FGFR2 mutations in BBDS enhance nuclear and nucleolar localization of the receptor; however, exactly how shifts in subcellular distribution of FGFR2 affect limb development remained unknown. RESULTS: Targeted expression of the BBDS mutations in the lateral plate mesoderm of the developing chick induced angulated hindlimbs, a hallmark feature of the disease. Whole-mount analysis of the underlying skeleton revealed bent long bones with shortened bone collars and, in severe cases, dysmorphic epiphyses. Epiphyseal changes were also correlated with joint dislocations and contractures. Histological analysis revealed that bent long bones and joint defects were closely associated with irregularities in skeletal muscle patterning and tendon-to-bone attachment. The spectrum of limb phenotypes induced by the BBDS mutations were recapitulated by targeted expression of wild-type FGFR2 appended with nuclear and nucleolar localization signals. CONCLUSIONS: Our results indicate that the bent long bones in BBDS arise from disruptions in musculoskeletal integration and that increased nuclear and nucleolar localization of FGFR2 plays a mechanistic role in the disease phenotype. 248:233-246, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Núcleo Celular/química , Extremidades/crescimento & desenvolvimento , Receptores Proteína Tirosina Quinases/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Animais , Doenças do Desenvolvimento Ósseo/genética , Embrião de Galinha , Deformidades Congênitas dos Membros/genética , Fenótipo , Receptores Proteína Tirosina Quinases/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia
5.
Genesis ; 57(1): e23252, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253032

RESUMO

The skeletal structure of the mammalian middle ear, which is composed of three endochondral ossicles suspended within a membranous air-filled capsule, plays a critical role in conducting sound. Gene mutations that alter skeletal development in the middle ear result in auditory impairment. Mutations in fibroblast growth factor receptor 2 (FGFR2), an important regulator of endochondral and intramembranous bone formation, cause a spectrum of congenital skeletal disorders featuring conductive hearing loss. Although the middle ear malformations in multiple FGFR2 gain-of-function disorders are clinically characterized, those in the FGFR2 loss-of-function disorder lacrimo-auriculo-dento-digital (LADD) syndrome are relatively undescribed. To better understand conductive hearing loss in LADD, we examined the middle ear skeleton of mice with conditional loss of Fgfr2. We find that decreased auditory function in Fgfr2 mutant mice correlates with hypoplasia of the auditory bulla and ectopic bone growth at sites of tendon/ligament attachment. We show that ectopic bone associated with the intra-articular ligaments of the incudomalleal joint is derived from Scx-expressing cells and preceded by decreased expression of the joint progenitor marker Gdf5. Together, these results identify a role for Fgfr2 in development of the middle ear skeletal tissues and suggest potential causes for conductive hearing loss in LADD syndrome.


Assuntos
Anormalidades Múltiplas/genética , Orelha Média/metabolismo , Perda Auditiva/genética , Doenças do Aparelho Lacrimal/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Sindactilia/genética , Anormalidades Dentárias/genética , Animais , Desenvolvimento Ósseo , Orelha Média/anormalidades , Orelha Média/embriologia , Fator 5 de Diferenciação de Crescimento/metabolismo , Mutação com Perda de Função , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
6.
Hum Mol Genet ; 25(R2): R86-R93, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27346519

RESUMO

Craniofacial development is an intricate process of patterning, morphogenesis, and growth that involves many tissues within the developing embryo. Genetic misregulation of these processes leads to craniofacial malformations, which comprise over one-third of all congenital birth defects. Significant advances have been made in the clinical management of craniofacial disorders, but currently very few treatments specifically target the underlying molecular causes. Here, we review recent studies in which modeling of craniofacial disorders in primary patient cells, patient-derived induced pluripotent stem cells (iPSCs), and mice have enhanced our understanding of the etiology and pathophysiology of these disorders while also advancing therapeutic avenues for their prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...