Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(24): 6969-6987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37464471

RESUMO

Polyploidy has been suggested to negatively impact environmental stress tolerance, resulting in increased susceptibility to extreme climate events. In this study, we compared the genomic and physiological response of diploid (2n) and triploid (3n) Pacific oysters (Crassostrea gigas) to conditions present during an atmospheric heatwave that impacted the Pacific Northwestern region of the United States in the summer of 2021. Climate stressors were applied either singly (single stressor; elevated seawater temperature, 30°C) or in succession (multiple stressor; elevated seawater temperature followed by aerial emersion at 44°C), replicating conditions present within the intertidal over a tidal cycle during the event. Oyster mortality rate was elevated within stress treatments with respect to the control and was significantly higher in triploids than diploids following multiple stress exposure (36.4% vs. 14.8%). Triploids within the multiple stressor treatment exhibited signs of energetic limitation, including metabolic depression, a significant reduction in ctenidium Na+ /K+ ATPase activity, and the dysregulated expression of genes associated with stress response, innate immunity, glucose metabolism, and mitochondrial function. Functional enrichment analysis of ploidy-specific gene sets identified that biological processes associated with metabolism, stress tolerance, and immune function were overrepresented within triploids across stress treatments. Our results suggest that triploidy impacts the transcriptional regulation of key processes that underly the stress response of Pacific oysters, resulting in downstream shifts in physiological tolerance limits that may increase susceptibility to extreme climate events that present multiple environmental stressors. The impact of chromosome set manipulation on the climate resilience of marine organisms has important implications for domestic food security within future climate scenarios, especially as triploidy induction becomes an increasingly popular tool to elicit reproductive control across a wide range of species used within marine aquaculture.


Assuntos
Crassostrea , Triploidia , Animais , Crassostrea/genética , Reprodução , Água do Mar , Estações do Ano
2.
Artigo em Inglês | MEDLINE | ID: mdl-37269757

RESUMO

Since the introduction of the Pacific oyster Crassostrea gigas in Baja California Sur, Mexico, its culture has faced environmental challenges, specifically increasing temperatures that result in high mortalities. The inter-tidal zone seawater temperature during a year at the Baja California Peninsula broadly ranges from 7 °C to 39 °C. Therefore, to understand how oysters respond to heat stress during daily temperature oscillations, heat-resistant (RR, father, and mother resistant) and heat-susceptible (SS, both parents susceptible) phenotypes families from a C. gigas breeding program were exposed to a thermal challenge. Based on a laboratory-simulated daily oscillatory thermal challenge (26 to 34 °C) for 30 days, RR phenotype presented differences compared to SS phenotype since the beginning (day 0) of the thermal challenge. Gene expression analyses revealed 1822 differentially expressed up-regulated transcripts in RR, related to functions of metabolic processes, biological regulation, and response to stimulus and signaling. At the end of the experiment (day 30), 2660 differentially expressed up-regulated transcripts were identified in RR. Functional analysis of the genes expressed indicates responses of regulation of biological processes and response to a stimulus. Additionally, 340 genes were differentially expressed among RR vs. SS from the beginning to the end of the thermal challenge, where 170 genes were up-regulated, and 170 were down-regulated. These transcriptomic profiles represent the first report to identify gene expression markers associated with RR phenotypes for the Pacific oyster to the future broodstock selection.


Assuntos
Crassostrea , Transcriptoma , Animais , Crassostrea/metabolismo , México , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética
4.
Genome Biol Evol ; 15(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36740242

RESUMO

Delineating the relative influence of genotype and the environment on DNA methylation is critical for characterizing the spectrum of organism fitness as driven by adaptation and phenotypic plasticity. In this study, we integrated genomic and DNA methylation data for two distinct Olympia oyster (Ostrea lurida) populations while controlling for within-generation environmental influences. In addition to providing the first characterization of genome-wide DNA methylation patterns in the oyster genus Ostrea, we identified 3,963 differentially methylated loci between populations. Our results show a clear coupling between genetic and epigenetic patterns of variation, with 27% of variation in interindividual methylation differences explained by genotype. Underlying this association are both direct genetic changes in CpGs (CpG-SNPs) and genetic variation with indirect influence on methylation (mQTLs). When comparing measures of genetic and epigenetic population divergence at specific genomic regions this relationship surprisingly breaks down, which has implications for the methods commonly used to study epigenetic and genetic coupling in marine invertebrates.


Assuntos
Metilação de DNA , Genoma , Animais , Genética Populacional , Epigênese Genética , Invertebrados/genética , Ilhas de CpG
5.
Mol Ecol ; 32(2): 412-427, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314404

RESUMO

For marine invertebrates with a pelagic-benthic life cycle, larval exposure to ocean acidification (OA) can affect adult performance in response to another environmental stressor. This carry-over effect has the potential to alter phenotypic traits. However, the molecular mechanisms that mediate "OA"-triggered carry-over effects have not been explored despite such information being key to improving species fitness and management strategies for aquafarming. This study integrated the genome-wide DNA methylome and transcriptome to examine epigenetic modification-mediated carry-over OA impacts on phenotypic traits of the ecologically and commercially important oyster species Crassostrea hongkongensis under field conditions. Larvae of C. hongkongensis were exposed to control pH 8.0 and low pH 7.4 conditions, mimicking near future OA scenario in their habitat, before being outplanted as post-metamorphic juveniles at two mariculture field sites with contrasting environmental stressors for 9 months. The larval carry-over OA effect was found to have persistent impacts on the growth and survival trade-off traits on the outplanted juveniles, although the beneficial or adverse effect depended on the environmental conditions at the outplanted sites. Site-specific plasticity was demonstrated with a diverse DNA methylation-associated gene expression profile, with signal transduction and the endocrine system being the most common and highly enriched functions. Highly methylated exons prevailed in the key genes related to general metabolic and endocytic responses and these genes are evolutionarily conserved in various marine invertebrates in response to OA. These results suggest that oysters with prior larval exposure history to OA had the ability to trigger rapid local adaptive responses via epigenetic modification to cope with multiple stressors in the field.


Assuntos
Crassostrea , Ostrea , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Adaptação Fisiológica/genética , Crassostrea/genética , Crassostrea/metabolismo , Larva , Dióxido de Carbono/química
6.
BMC Genomics ; 23(1): 556, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927609

RESUMO

BACKGROUND: There is a need to investigate mechanisms of phenotypic plasticity in marine invertebrates as negative effects of climate change, like ocean acidification, are experienced by coastal ecosystems. Environmentally-induced changes to the methylome may regulate gene expression, but methylome responses can be species- and tissue-specific. Tissue-specificity has implications for gonad tissue, as gonad-specific methylation patterns may be inherited by offspring. We used the Pacific oyster (Crassostrea gigas) - a model for understanding pH impacts on bivalve molecular physiology due to its genomic resources and importance in global aquaculture- to assess how low pH could impact the gonad methylome. Oysters were exposed to either low pH (7.31 ± 0.02) or ambient pH (7.82 ± 0.02) conditions for 7 weeks. Whole genome bisulfite sequencing was used to identify methylated regions in female oyster gonad samples. C- > T single nucleotide polymorphisms were identified and removed to ensure accurate methylation characterization. RESULTS: Analysis of gonad methylomes revealed a total of 1284 differentially methylated loci (DML) found primarily in genes, with several genes containing multiple DML. Gene ontologies for genes containing DML were involved in development and stress response, suggesting methylation may promote gonad growth homeostasis in low pH conditions. Additionally, several of these genes were associated with cytoskeletal structure regulation, metabolism, and protein ubiquitination - commonly-observed responses to ocean acidification. Comparison of these DML with other Crassostrea spp. exposed to ocean acidification demonstrates that similar pathways, but not identical genes, are impacted by methylation. CONCLUSIONS: Our work suggests DNA methylation may have a regulatory role in gonad and larval development, which would shape adult and offspring responses to low pH stress. Combined with existing molluscan methylome research, our work further supports the need for tissue- and species-specific studies to understand the potential regulatory role of DNA methylation.


Assuntos
Crassostrea , Metilação de DNA , Animais , Crassostrea/metabolismo , DNA/metabolismo , Ecossistema , Feminino , Homeostase , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
7.
Mol Ecol ; 31(19): 5005-5023, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947503

RESUMO

Sublethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa clams, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data were analysed after (i) a 110-day acclimation under ambient (921 µatm, naïve) and moderately elevated pCO2 (2870 µatm, pre-exposed); then following (ii) a second 7-day exposure to three pCO2 treatments (ambient: 754 µatm; moderately elevated: 2750 µatm; severely elevated: 4940 µatm), a 7-day return to ambient pCO2 and a third 7-day exposure to two pCO2 treatments (ambient: 967 µatm; moderately elevated: 3030 µatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defence under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicate that pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems.


Assuntos
Bivalves , Dióxido de Carbono , Aclimatação/genética , Animais , Antioxidantes , Bivalves/genética , Expressão Gênica , Glutationa , Concentração de Íons de Hidrogênio , Água do Mar
8.
Mol Ecol Resour ; 22(4): 1247-1261, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34709728

RESUMO

There is a growing focus on the role of DNA methylation in the ability of marine invertebrates to rapidly respond to changing environmental factors and anthropogenic impacts. However, genome-wide DNA methylation studies in nonmodel organisms are currently hampered by a limited understanding of methodological biases. Here, we compare three methods for quantifying DNA methylation at single base-pair resolution-whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and methyl-CpG binding domain bisulfite sequencing (MBDBS)-using multiple individuals from two reef-building coral species with contrasting environmental sensitivity. All methods reveal substantially greater methylation in Montipora capitata (11.4%) than the more sensitive Pocillopora acuta (2.9%). The majority of CpG methylation in both species occurs in gene bodies and flanking regions. In both species, MBDBS has the greatest capacity for detecting CpGs in coding regions at our sequencing depth, but MBDBS may be influenced by intrasample methylation heterogeneity. RRBS yields robust information for specific loci albeit without enrichment of any particular genome feature and with significantly reduced genome coverage. Relative genome size strongly influences the number and location of CpGs detected by each method when sequencing depth is limited, illuminating nuances in cross-species comparisons. As genome-wide methylation differences, supported by data across bisulfite sequencing methods, may contribute to environmental sensitivity phenotypes in critical marine invertebrate taxa, these data provide a genomic resource for investigating the functional role of DNA methylation in environmental tolerance.


Assuntos
Metilação de DNA , Epigenoma , Animais , Viés , Ilhas de CpG/genética , Sequenciamento de Nucleotídeos em Larga Escala , Invertebrados/genética , Análise de Sequência de DNA/métodos
9.
J Exp Biol ; 224(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34027545

RESUMO

Although low levels of thermal stress, irradiance and dietary restriction can have beneficial effects for many taxa, stress acclimation remains little studied in marine invertebrates, even though they are threatened by climate change stressors such as ocean acidification. To test the role of life-stage and stress-intensity dependence in eliciting enhanced tolerance under subsequent stress encounters, we initially conditioned pediveliger Pacific geoduck (Panopea generosa) larvae to ambient and moderately elevated PCO2 (920 µatm and 2800 µatm, respectively) for 110 days. Then, clams were exposed to ambient, moderate or severely elevated PCO2 (750, 2800 or 4900 µatm, respectively) for 7 days and, following 7 days in ambient conditions, a 7-day third exposure to ambient (970 µatm) or moderate PCO2 (3000 µatm). Initial conditioning to moderate PCO2 stress followed by second and third exposure to severe and moderate PCO2 stress increased respiration rate, organic biomass and shell size, suggesting a stress-intensity-dependent effect on energetics. Additionally, stress-acclimated clams had lower antioxidant capacity compared with clams under ambient conditions, supporting the hypothesis that stress over postlarval-to-juvenile development affects oxidative status later in life. Time series and stress intensity-specific approaches can reveal life-stages and magnitudes of exposure, respectively, that may elicit beneficial phenotypic variation.


Assuntos
Bivalves , Água do Mar , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Estresse Oxidativo
10.
Glob Chang Biol ; 27(16): 3779-3797, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964098

RESUMO

Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased ~pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization-the shell. We grew early juvenile C. hongkongensis, under decreased ~pH 7.4 and control ~pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.


Assuntos
Biomineralização , Crassostrea , Exoesqueleto , Animais , Biomineralização/genética , Dióxido de Carbono , Crassostrea/genética , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
11.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33989381

RESUMO

Symbiosis with protists is common among cnidarians such as corals and sea anemones and is associated with homeostatic and phenotypic changes in the host that could have epigenetic underpinnings, such as methylation of CpG dinucleotides. We leveraged the sensitivity to base modifications of nanopore sequencing to probe the effect of symbiosis with the chlorophyte Elliptochloris marina on methylation in the sea anemone Anthopleura elegantissima. We first validated the approach by comparison of nanopore-derived methylation levels with CpG depletion analysis of a published transcriptome, finding that high methylation levels are associated with CpG depletion as expected. Next, using reads generated exclusively from aposymbiotic anemones, a largely complete draft genome comprising 243 Mb was assembled. Reads from aposymbiotic and symbiotic sea anemones were then mapped to this genome and assessed for methylation using the program Nanopolish, which detects signal disruptions from base modifications as they pass through the nanopore. Based on assessment of 452,841 CpGs for which there was adequate read coverage (approximately 8% of the CpGs in the genome), symbiosis with E. marina was, surprisingly, associated with only subtle changes in the host methylome. However, we did identify one extended genomic region with consistently higher methylation among symbiotic individuals. The region was associated with a DNA polymerase zeta that is noted for its role in translesion synthesis, which opens interesting questions about the biology of this symbiosis. Our study highlights the power and relative simplicity of nanopore sequencing for studies of nucleic acid base modifications in non-model species.


Assuntos
Dinoflagellida , Sequenciamento por Nanoporos , Anêmonas-do-Mar , Animais , Simbiose/genética , Dinoflagellida/genética , Metilação de DNA , Anêmonas-do-Mar/genética
12.
Environ Microbiome ; 16(1): 7, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33902744

RESUMO

BACKGROUND: Microbial communities are ubiquitous throughout ecosystems and are commensal with hosts across taxonomic boundaries. Environmental and species-specific microbiomes are instrumental in maintaining ecosystem and host health, respectively. The introduction of pathogenic microbes that shift microbiome community structure can lead to illness and death. Understanding the dynamics of microbiomes across a diversity of environments and hosts will help us to better understand which taxa forecast survival and which forecast mortality events. RESULTS: We characterized the bacterial community microbiome in the water of a commercial shellfish hatchery in Washington state, USA, where the hatchery has been plagued by recurring and unexplained larval mortality events. By applying the complementary methods of metagenomics and metaproteomics we were able to more fully characterize the bacterial taxa in the hatchery at high (pH 8.2) and low (pH 7.1) pH that were metabolically active versus present but not contributing metabolically. There were shifts in the taxonomy and functional profile of the microbiome between pH and over time. Based on detected metagenomic reads and metaproteomic peptide spectral matches, some taxa were more metabolically active than expected based on presence alone (Deltaproteobacteria, Alphaproteobacteria) and some were less metabolically active than expected (e.g., Betaproteobacteria, Cytophagia). There was little correlation between potential and realized metabolic function based on Gene Ontology analysis of detected genes and peptides. CONCLUSION: The complementary methods of metagenomics and metaproteomics contribute to a more full characterization of bacterial taxa that are potentially active versus truly metabolically active and thus impact water quality and inter-trophic relationships.

13.
Mar Environ Res ; 163: 105217, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33276167

RESUMO

Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.


Assuntos
Crassostrea , Animais , Dióxido de Carbono , Crassostrea/genética , Metilação de DNA , Concentração de Íons de Hidrogênio , Larva/genética , Oceanos e Mares , Água do Mar
14.
Mar Environ Res ; 163: 105214, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33221553

RESUMO

Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.


Assuntos
Crassostrea , Animais , Dióxido de Carbono , Crassostrea/genética , Metilação de DNA , Concentração de Íons de Hidrogênio , Larva/genética , Oceanos e Mares , Água do Mar
15.
BMC Genomics ; 21(1): 723, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076839

RESUMO

BACKGROUND: Protein expression patterns underlie physiological processes and phenotypic differences including those occurring during early development. The Pacific oyster (Crassostrea gigas) undergoes a major phenotypic change in early development from free-swimming larval form to sessile benthic dweller while proliferating in environments with broad temperature ranges. Despite the economic and ecological importance of the species, physiological processes occurring throughout metamorphosis and the impact of temperature on these processes have not yet been mapped out. RESULTS: Towards this, we comprehensively characterized protein abundance patterns for 7978 proteins throughout metamorphosis in the Pacific oyster at different temperature regimes. We used a multi-statistical approach including principal component analysis, ANOVA-simultaneous component analysis, and hierarchical clustering coupled with functional enrichment analysis to characterize these data. We identified distinct sets of proteins with time-dependent abundances generally not affected by temperature. Over 12 days, adhesion and calcification related proteins acutely decreased, organogenesis and extracellular matrix related proteins gradually decreased, proteins related to signaling showed sinusoidal abundance patterns, and proteins related to metabolic and growth processes gradually increased. Contrastingly, different sets of proteins showed temperature-dependent abundance patterns with proteins related to immune response showing lower abundance and catabolic pro-growth processes showing higher abundance in animals reared at 29 °C relative to 23 °C. CONCLUSION: Although time was a stronger driver than temperature of metamorphic proteome changes, temperature-induced proteome differences led to pro-growth physiology corresponding to larger oyster size at 29 °C, and to altered specific metamorphic processes and possible pathogen presence at 23 °C. These findings offer high resolution insight into why oysters may experience high mortality rates during this life transition in both field and culture settings. The proteome resource generated by this study provides data-driven guidance for future work on developmental changes in molluscs. Furthermore, the analytical approach taken here provides a foundation for effective shotgun proteomic analyses across a variety of taxa.


Assuntos
Crassostrea , Proteômica , Animais , Crassostrea/genética , Perfilação da Expressão Gênica , Proteoma , Temperatura
16.
Conserv Physiol ; 8(1): coaa024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274068

RESUMO

While acute stressors can be detrimental, environmental stress conditioning can improve performance. To test the hypothesis that physiological status is altered by stress conditioning, we subjected juvenile Pacific geoduck, Panopea generosa, to repeated exposures of elevated pCO2 in a commercial hatchery setting followed by a period in ambient common garden. Respiration rate and shell length were measured for juvenile geoduck periodically throughout short-term repeated reciprocal exposure periods in ambient (~550 µatm) or elevated (~2400 µatm) pCO2 treatments and in common, ambient conditions, 5 months after exposure. Short-term exposure periods comprised an initial 10-day exposure followed by 14 days in ambient before a secondary 6-day reciprocal exposure. The initial exposure to elevated pCO2 significantly reduced respiration rate by 25% relative to ambient conditions, but no effect on shell growth was detected. Following 14 days in common garden, ambient conditions, reciprocal exposure to elevated or ambient pCO2 did not alter juvenile respiration rates, indicating ability for metabolic recovery under subsequent conditions. Shell growth was negatively affected during the reciprocal treatment in both exposure histories; however, clams exposed to the initial elevated pCO2 showed compensatory growth with 5.8% greater shell length (on average between the two secondary exposures) after 5 months in ambient conditions. Additionally, clams exposed to the secondary elevated pCO2 showed 52.4% increase in respiration rate after 5 months in ambient conditions. Early exposure to low pH appears to trigger carryover effects suggesting bioenergetic re-allocation facilitates growth compensation. Life stage-specific exposures to stress can determine when it may be especially detrimental, or advantageous, to apply stress conditioning for commercial production of this long-lived burrowing clam.

17.
Sci Rep ; 10(1): 6042, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269285

RESUMO

The innate immune response is active in invertebrate larvae from early development. Induction of immune response pathways may occur as part of the natural progression of larval development, but an up-regulation of pathways can also occur in response to a pathogen. Here, we took advantage of a protozoan ciliate infestation of a larval geoduck clam culture in a commercial hatchery to investigate the molecular underpinnings of the innate immune response of the larvae to the pathogen. Larval proteomes were analyzed on days 4-10 post-fertilization; ciliates were present on days 8 and 10 post-fertilization. Through comparisons with larval cultures that did not encounter ciliates, proteins implicated in the response to ciliate presence were identified using mass spectrometry-based proteomics. Ciliate response proteins included many associated with ribosomal synthesis and protein translation, suggesting the importance of protein synthesis during the larval immune response. There was also an increased abundance of proteins typically associated with the stress and immune responses during ciliate exposure, such as heat shock proteins, glutathione metabolism, and the reactive oxygen species response. These findings provide a basic understanding of the bivalve molecular response to a mortality-inducing ciliate and improved characterization of the ontogenetic development of the innate immune response.


Assuntos
Bivalves/imunologia , Infecções por Cilióforos/metabolismo , Cilióforos/fisiologia , Proteoma/metabolismo , Animais , Células Cultivadas , Glutationa/metabolismo , Proteínas de Choque Térmico/metabolismo , Imunidade Inata , Larva , Espectrometria de Massas , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
18.
Ecol Evol ; 10(1): 185-197, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31988722

RESUMO

Pacific geoducks (Panopea generosa) are clams found along the northeast Pacific coast where they are important components of coastal and estuarine ecosystems and a major aquaculture product. The Pacific coastline, however, is also experiencing rapidly changing ocean habitat, including significant reductions in pH. To better understand the physiological impact of ocean acidification on geoduck clams, we characterized for the first time the proteomic profile of this bivalve during larval development and compared it to that of larvae exposed to low pH conditions. Geoduck larvae were reared at pH 7.5 (ambient) or pH 7.1 in a commercial shellfish hatchery from day 6 to day 19 postfertilization and sampled at six time points for an in-depth proteomics analysis using high-resolution data-dependent analysis. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development, and displayed a delay in their competency for settlement. Proteomic profiles revealed that metabolic, cell cycle, and protein turnover pathways differed between the two pH and suggested that differing phenotypic outcomes between pH 7.5 and 7.1 are likely due to environmental disruptions to the timing of physiological events. In summary, ocean acidification results in elevated energetic demand on geoduck larvae, resulting in delayed development and disruptions to normal molecular developmental pathways, such as carbohydrate metabolism, cell growth, and protein synthesis.

19.
Ecol Appl ; 30(3): e02060, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31863716

RESUMO

Predicting how populations will respond to ocean change across generations is critical to effective conservation of marine species. One emerging factor is the influence of parental exposures on offspring phenotype, known as intergenerational carryover effects. Parental exposure may deliver beneficial or detrimental characteristics to offspring that can influence larval recruitment patterns, thus shaping how populations and community structure respond to ocean change. Impacts of adult exposure to elevated winter temperature and pCO2 on reproduction and offspring viability were examined in the Olympia oyster (Ostrea lurida) using three populations of adult, hatchery-reared O. lurida, plus an additional cohort spawned from one of the populations. Oysters were sequentially exposed to elevated temperature (+4°C, at 10°C), followed by elevated pCO2 (+2,204 µatm, at 3,045 µatm) during winter months. Male gametes were more developed after elevated temperature exposure and less developed after high pCO2 exposure, but there was no impact on female gametes or sex ratios. Oysters previously exposed to elevated winter temperature released larvae earlier, regardless of pCO2 exposure. Those exposed to elevated winter temperature as a sole treatment released more larvae on a daily basis but, when also exposed to high pCO2 , there was no effect. These combined results indicate that elevated winter temperature accelerates O. lurida spermatogenesis, resulting in earlier larval release and increased production, with elevated pCO2 exposure negating effects of elevated temperature. Altered recruitment patterns may therefore follow warmer winters due to precocious spawning, but these effects may be masked by coincidental high pCO2 . Offspring were reared in common conditions for 1 yr, then deployed for 3 months in four estuarine bays with distinct environmental conditions. Offspring of parents exposed to elevated pCO2 had higher survival rates in two of the four bays. This carryover effect demonstrates that parental conditions can have substantial ecologically relevant impacts that should be considered when predicting impacts of environmental change. Furthermore, Olympia oysters may be more resilient in certain environments when progenitors are pre-conditioned in stressful conditions. Combined with other recent studies, our work suggests that the Olympia may be more equipped than other oysters for the challenge of a changing ocean.


Assuntos
Ostreidae , Água do Mar , Animais , Baías , Dióxido de Carbono/efeitos adversos , Feminino , Ligas de Ouro , Concentração de Íons de Hidrogênio , Masculino , Temperatura
20.
Artigo em Inglês | MEDLINE | ID: mdl-30818101

RESUMO

Pacific geoduck aquaculture is a growing industry, however, little is known about how geoduck respond to varying environmental conditions, or how the industry will fare under projected climate conditions. To understand how geoduck production may be impacted by low pH associated with ocean acidification, multi-faceted environmental heterogeneity needs to be included to understand species and community responses. In this study, eelgrass habitats and environmental heterogeneity across four estuarine bays were leveraged to examine low pH effects on geoduck under different natural regimes, using targeted proteomics to assess physiology. Juvenile geoduck were deployed in eelgrass and adjacent unvegetated habitats for 30 days while pH, temperature, dissolved oxygen, and salinity were monitored. Across the four bays, pH was lower in unvegetated habitats compared to eelgrass habitats. However this did not impact geoduck growth, survival, or proteomic abundance patterns in gill tissue. Temperature and dissolved oxygen differences across all locations corresponded to differences in growth and targeted protein abundance patterns. Specifically, three protein abundance levels (trifunctional-enzyme ß-subunit, puromycin-sensitive aminopeptidase, and heat shock protein 90-α) and shell growth positively correlated with dissolved oxygen variability and inversely correlated with mean temperature. These results demonstrate that geoduck may be resilient to low pH in a natural setting, but other abiotic factors (i.e. temperature, dissolved oxygen variability) may have a greater influence on geoduck physiology. In addition this study contributes to the understanding of how eelgrass patches influences water chemistry.


Assuntos
Bivalves/fisiologia , Aclimatação , Animais , Bivalves/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Proteínas/análise , Salinidade , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...