Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 10(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34768597

RESUMO

Existing studies show that CNS oxytocin (OT) signaling is important in the control of energy balance, but it is unclear which neurons may contribute to these effects. Our goals were to examine (1) the dose-response effects of acute OT administration into the third (3V; forebrain) and fourth (4V; hindbrain) ventricles to assess sensitivity to OT in forebrain and hindbrain sites, (2) the extent to which chronic 4V administration of OT reduces weight gain associated with the progression of diet-induced obesity, and (3) whether nucleus tractus solitarius (NTS) catecholamine neurons are downstream targets of 4V OT. Initially, we examined the dose-response effects of 3V and 4V OT (0.04, 0.2, 1, or 5 µg). 3V and 4V OT (5 µg) suppressed 0.5-h food intake by 71.7 ± 6.0% and 60 ± 12.9%, respectively. 4V OT (0.04, 0.2, 1 µg) reduced food intake by 30.9 ± 12.9, 42.1 ± 9.4, and 56.4 ± 9.0%, respectively, whereas 3V administration of OT (1 µg) was only effective at reducing 0.5-h food intake by 38.3 ± 10.9%. We subsequently found that chronic 4V OT infusion, as with chronic 3V infusion, reduced body weight gain (specific to fat mass) and tended to reduce plasma leptin in high-fat diet (HFD)-fed rats, in part, through a reduction in energy intake. Lastly, we determined that 4V OT increased the number of hindbrain caudal NTS Fos (+) neurons (156 ± 25) relative to vehicle (12 ± 3). The 4V OT also induced Fos in tyrosine hydroxylase (TH; marker of catecholamine neurons) (+) neurons (25 ± 7%) relative to vehicle (0.8 ± 0.3%). Collectively, these findings support the hypothesis that OT within the hindbrain is effective at reducing food intake, weight gain, and adiposity and that NTS catecholamine neurons in addition to non-catecholaminergic neurons are downstream targets of CNS OT.

2.
Adv Neurobiol ; 21: 101-193, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30334222

RESUMO

This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.


Assuntos
Hipotálamo , Memória , Proteômica , Refugiados , Animais , Encéfalo , Humanos , Hipotálamo/metabolismo , Memória/fisiologia , Refugiados/psicologia , Biologia de Sistemas
3.
Am J Physiol Regul Integr Comp Physiol ; 313(4): R357-R371, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747407

RESUMO

Oxytocin (OT) administration elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates, and humans by reducing energy intake and increasing energy expenditure. Although the neurocircuitry underlying these effects remains uncertain, OT neurons in the paraventricular nucleus are positioned to control both energy intake and sympathetic nervous system outflow to interscapular brown adipose tissue (BAT) through projections to the hindbrain nucleus of the solitary tract and spinal cord. The current work was undertaken to examine whether central OT increases BAT thermogenesis, whether this effect involves hindbrain OT receptors (OTRs), and whether such effects are associated with sustained weight loss following chronic administration. To assess OT-elicited changes in BAT thermogenesis, we measured the effects of intracerebroventricular administration of OT on interscapular BAT temperature in rats and mice. Because fourth ventricular (4V) infusion targets hindbrain OTRs, whereas third ventricular (3V) administration targets both forebrain and hindbrain OTRs, we compared responses to OT following chronic 3V infusion in DIO rats and mice and chronic 4V infusion in DIO rats. We report that chronic 4V infusion of OT into two distinct rat models recapitulates the effects of 3V OT to ameliorate DIO by reducing fat mass. While reduced food intake contributes to this effect, our finding that 4V OT also increases BAT thermogenesis suggests that increased energy expenditure may contribute as well. Collectively, these findings support the hypothesis that, in DIO rats, OT action in the hindbrain evokes sustained weight loss by reducing energy intake and increasing BAT thermogenesis.


Assuntos
Tecido Adiposo Marrom/fisiopatologia , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Ocitocina/farmacologia , Rombencéfalo/fisiopatologia , Termogênese/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Depressores do Apetite/farmacologia , Dieta Hiperlipídica/efeitos adversos , Relação Dose-Resposta a Droga , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Rombencéfalo/efeitos dos fármacos , Especificidade da Espécie , Resultado do Tratamento
4.
Am J Physiol Regul Integr Comp Physiol ; 310(7): R640-58, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26791828

RESUMO

Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.


Assuntos
Adiposidade/fisiologia , Encéfalo/fisiologia , Dieta Hiperlipídica/métodos , Metabolismo dos Lipídeos/fisiologia , Ocitocina/farmacocinética , Resposta de Saciedade/fisiologia , Animais , Apetite/fisiologia , Fissura/fisiologia , Gorduras na Dieta/metabolismo , Infusões Intraventriculares , Masculino , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Ocitocina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Redução de Peso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...