Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34308991

RESUMO

Claudin (Cldn)-10 tight junction (TJ) proteins are hypothesized to form the paracellular Na+ secretion pathway of hyposmoregulating mummichog (Fundulus heteroclitus) branchial epithelia. Organ-specific expression profiles showed that only branchial organs [the gill and opercular epithelium (OE)] exhibited abundant cldn-10 paralog transcripts, which typically increased following seawater (SW) to hypersaline (2SW) challenge. Post-translational properties, protein abundance, and ionocyte localization of Cldn-10c, were then examined in gill and OE. Western blot analysis revealed two Cldn-10c immunoreactive bands in the mummichog gill and OE at ∼29 kDa and ∼40 kDa. The heavier protein could be eliminated by glycosidase treatment, demonstrating the novel presence of a glycosylated Cldn-10c. Protein abundance of Cldn-10c increased in gill and OE of 2SW-exposed fish. Cldn-10c localized to the sides of gill and OE ionocyte apical crypts and partially colocalized with cystic fibrosis transmembrane conductance regulator and F-actin, consistent with TJ complex localization. Cldn-10c immunofluorescent intensity increased but localization was unaltered by 2SW conditions. In support of our hypothesis, cldn-10/Cldn-10 TJ protein dynamics in gill and OE of mummichogs and TJ localization are functionally consistent with the creation and maintenance of salinity-responsive, cation-selective pores that facilitate Na+ secretion in hyperosmotic environments.


Assuntos
Aclimatação/fisiologia , Claudinas/metabolismo , Epitélio/metabolismo , Íons/metabolismo , Lobo Temporal/metabolismo , Animais , Fundulidae , Salinidade
2.
J Exp Biol ; 221(Pt 1)2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29150449

RESUMO

To provide insight into claudin (Cldn) tight junction (TJ) protein contributions to branchial salt secretion in marine teleost fishes, this study examined cldn-10 TJ protein isoforms of a euryhaline teleost (mummichog; Fundulus heteroclitus) in association with salinity change and measurements of transepithelial cation selectivity. Mummichogs were transferred from freshwater (FW) to seawater (SW, 35‰) and from SW to hypersaline SW (2SW, 60‰) in a time course with transfer control groups (FW to FW, and SW to SW). FW to SW transfer increased mRNA abundance of cldn-10d and cldn-10e twofold, whilst cldn-10c and cldn-10f transcripts were unchanged. Transfer from SW to 2SW did not alter cldn-10d, and transiently altered cldn-10e abundance, but increased cldn-10c and cldn-10f fourfold. This was coincident with an increased number of single-stranded junctions (observed by transmission electron microscopy). For both salinity transfers, (1) cldn-10e mRNA was acutely responsive (i.e. after 24 h), (2) other responsive cldn-10 isoforms increased later (3-7 days), and (3) cystic fibrosis transmembrane conductance regulator (cftr) mRNA was elevated in accordance with established changes in transcellular Cl- movement. Changes in mRNA encoding cldn-10c and -10f appeared linked, consistent with the tandem repeat locus in the Fundulus genome, whereas mRNA for tandem cldn-10d and cldn-10e seemed independent of each other. Cation selectivity sequence measured by voltage and conductance responses to artificial SW revealed Eisenman sequence VII: Na+>K+>Rb+∼Cs+>Li+ Collectively, these data support the idea that Cldn-10 TJ proteins create and maintain cation-selective pore junctions in salt-secreting tissues of teleost fishes.


Assuntos
Cátions/metabolismo , Claudinas/genética , Proteínas de Peixes/genética , Fundulidae/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Salinidade , Cloreto de Sódio/farmacologia , Animais , Transporte Biológico , Claudinas/metabolismo , Epitélio/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Fundulidae/metabolismo , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Cloreto de Sódio/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-27746134

RESUMO

In eurythermic vertebrates, acclimation to the cold may produce changes in physiological control systems. We hypothesize that relatively direct osmosensitive control will operate better than adrenergic receptor mediated control of ion transport in cold vs. warm conditions. Fish were acclimated to full strength seawater (SW) at 21°C and 5°C for four weeks, gill samples and blood were taken and opercular epithelia mounted in Ussing style chambers. Short-circuit current (Isc) at 21°C and 5°C (measured at acclimation temperature), was significantly inhibited by the α2-adrenergic agonist clonidine but the ED50 dose was significantly higher in cold conditions (93.8±16.4nM) than in warm epithelia (47.8±8.1nM) and the maximum inhibition was significantly lower in cold (-66.1±2.2%) vs. warm conditions (-85.6±1.3%), indicating lower sensitivity in the cold. ß-Adrenergic responses were unchanged. Hypotonic inhibition of Isc, was higher in warm acclimated (-95%), compared to cold acclimated fish (-75%), while hypertonic stimulations were the same, indicating equal responsiveness to hyperosmotic stimuli. Plasma osmolality was significantly elevated in cold acclimated fish and, by TEM, gill ionocytes from cold acclimated fish had significantly shorter mitochondria. These data are consistent with a shift in these eurythermic animals from complex adrenergic control to relatively simple biomechanical osmotic control of ion secretion in the cold.


Assuntos
Aclimatação , Neurônios Adrenérgicos/metabolismo , Fundulidae/fisiologia , Brânquias/fisiologia , Osmorregulação , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/ultraestrutura , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Aquicultura , Temperatura Baixa/efeitos adversos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Fundulidae/sangue , Brânquias/efeitos dos fármacos , Brânquias/inervação , Brânquias/ultraestrutura , Soluções Hipertônicas , Soluções Hipotônicas , Técnicas In Vitro/veterinária , Cinética , Masculino , Microscopia Eletrônica de Transmissão/veterinária , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Nova Escócia , Lagoas
4.
J Exp Biol ; 218(Pt 8): 1259-69, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25750413

RESUMO

In vertebrate salt-secreting epithelia, Na(+) moves passively down an electrochemical gradient via a paracellular pathway. We assessed how this pathway is modified to allow Na(+) secretion in hypersaline environments. Mummichogs (Fundulus heteroclitus) acclimated to hypersaline [2× seawater (2SW), 64‰] for 30 days developed invasive projections of accessory cells with an increased area of tight junctions, detected by punctate distribution of CFTR (cystic fibrosis transmembrane conductance regulator) immunofluorescence and transmission electron miscroscopy of the opercular epithelia, which form a gill-like tissue rich in ionocytes. Distribution of CFTR was not explained by membrane raft organization, because chlorpromazine (50 µmol l(-1)) and filipin (1.5 µmol l(-1)) did not affect opercular epithelia electrophysiology. Isolated opercular epithelia bathed in SW on the mucosal side had a transepithelial potential (Vt) of +40.1±0.9 mV (N=24), sufficient for passive Na(+) secretion (Nernst equilibrium voltage≡ENa=+24.11 mV). Opercular epithelia from fish acclimated to 2SW and bathed in 2SW had higher Vt of +45.1±1.2 mV (N=24), sufficient for passive Na(+) secretion (ENa=+40.74 mV), but with diminished net driving force. Bumetanide block of Cl(-) secretion reduced Vt by 45% and 29% in SW and 2SW, respectively, a decrease in the driving force for Na(+) extrusion. Estimates of shunt conductance from epithelial conductance (Gt) versus short-circuit current (Isc) plots (extrapolation to zero Isc) suggested a reduction in total epithelial shunt conductance in 2SW-acclimated fish. In contrast, the morphological elaboration of tight junctions, leading to an increase in accessory-cell-ionocyte contact points, suggests an increase in local paracellular conductance, compensating for the diminished net driving force for Na(+) and allowing salt secretion, even in extreme salinities.


Assuntos
Fundulidae/metabolismo , Sódio/metabolismo , Aclimatação , Animais , Transporte Biológico Ativo , Clorpromazina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Epitélio/metabolismo , Filipina/farmacologia , Potenciais da Membrana , Salinidade
5.
J Morphol ; 275(8): 933-48, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24643973

RESUMO

In this study, we present a morphological description of the fine structure of the tissues composing the caudal tip of the adult zebrafish swim bladder and an immunochemical survey of the innervation at this site. The internal aspect of the caudal tip is lined by an epithelium specialized to secrete surfactant into the lumen as evinced by the exocytosis of lamellar bodies. The sole innervation to this region consists of a neural plexus, present on the external surface, of nitric oxide synthase-positive (nNOS) neuronal cell bodies that are contacted by axon terminals, some containing neuropeptide Y and vasoactive intestinal polypeptide. As the specialized epithelium and neural plexus are coincident and of common extent, we suggest that the morphological relationship between the two elements allows the nervous system to affect surfactant processing, possibly through a paracrine mechanism.


Assuntos
Sacos Aéreos/inervação , Peixe-Zebra/anatomia & histologia , Sacos Aéreos/enzimologia , Sacos Aéreos/metabolismo , Animais , Epitélio/metabolismo , Matriz Extracelular/ultraestrutura , Feminino , Fibroblastos/ultraestrutura , Masculino , Corpos Multivesiculares/ultraestrutura , Músculo Liso/ultraestrutura , Rede Nervosa/ultraestrutura , Óxido Nítrico Sintase Tipo I/metabolismo , Vesículas Secretórias/ultraestrutura , Proteínas de Peixe-Zebra/metabolismo
6.
J Morphol ; 269(6): 666-73, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18302241

RESUMO

Many teleost fishes use a swimbladder, a gas-filled organ in the coelomic cavity, to reduce body density toward neutral buoyancy, thus minimizing the locomotory cost of maintaining a constant depth in the water column. However, for most swimbladder-bearing teleosts, the contribution of this organ to the attainment of neutral buoyancy has not been quantified. Here, we examined the quantitative contribution of the swimbladder to buoyancy and three-dimensional stability in a small cyprinid, the zebrafish (Danio rerio). In aquaria during daylight hours, adult animals were observed at mean depths from 10.1 +/- 6.0 to 14.2 +/- 5.6 cm below the surface. Fish mass and whole-body volume were linearly correlated (r(2) = 0.96) over a wide range of body size (0.16-0.73 g); mean whole-body density was 1.01 +/- 0.09 g cm(-3). Stereological estimations of swimbladder volume from linear dimensions of lateral X-ray images and direct measurements of gas volumes recovered by puncture from the same swimbladders showed that results from these two methods were highly correlated (r(2) = 0.85). The geometric regularity of the swimbladder thus permitted its volume to be accurately estimated from a single lateral image. Mean body density in the absence of the swimbladder was 1.05 +/- 0.04 g cm(-3). The swimbladder occupied 5.1 +/- 1.4% of total body volume, thus reducing whole-body density significantly. The location of the centers of mass and buoyancy along rostro-caudal and dorso-ventral axes overlapped near the ductus communicans, a constriction between the anterior and posterior swimbladder chambers. Our work demonstrates that the swimbladder of the adult zebrafish contributes significantly to buoyancy and attitude stability. Furthermore, we describe and verify a stereological method for estimating swimbladder volume that will aid future studies of the functions of this organ.


Assuntos
Sacos Aéreos/anatomia & histologia , Natação , Peixe-Zebra/anatomia & histologia , Animais , Pesos e Medidas Corporais , Feminino , Masculino , Pressão , Peixe-Zebra/fisiologia
7.
J Comp Neurol ; 495(5): 587-606, 2006 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-16498679

RESUMO

Many teleosts actively regulate buoyancy by using a gas-filled swim bladder, which is thought to be under autonomic control. Here we investigated the swim bladder in the zebrafish to determine possible mechanisms of gas-content regulation. Fluorescently labelled phalloidin revealed myocytes that appeared to form a possible sphincter at the junction of the pneumatic duct and esophagus. Myocytes also formed thick bands along the ventral surface of the anterior chamber and bilaterally along the posterior chamber. Thinner layers of myocytes were located elsewhere. Staining of peroxidase within erythrocytes revealed a putative rete and smaller blood vessels in muscle bands and elsewhere. The antibodies zn-12, a general neuronal marker, and SV2, a synaptic vesicle marker labelling presynaptic terminals, revealed widespread innervation of the swim bladder system. Widespread innervation of the swim bladder was also indicated by acetylcholinesterase histochemistry, but choline acetyltransferase-immunoreactive (-IR) somata and fibers were limited to the junction of the pneumatic duct and esophagus. In contrast, varicose tyrosine hydroxylase-IR fibers innervated muscles and blood vessels throughout the system. Neuropeptide Y-IR somata were located near the junction of the duct and esophagus and varicose fibers innervated muscles and vasculature of the posterior chamber and duct. Vasoactive intestinal polypeptide immunoreactivity was abundant throughout the anterior chamber but sparsely distributed elsewhere. Serotonin-IR fibers and varicosities were located only along blood vessels near the junction of the pneumatic duct and posterior chamber. Our results suggest that the zebrafish swim bladder is a complex and richly innervated organ and that buoyancy-regulating effectors may be controlled by multiple populations of autonomic neurons.


Assuntos
Sacos Aéreos/anatomia & histologia , Sacos Aéreos/inervação , Sistema Nervoso Autônomo/anatomia & histologia , Peixe-Zebra/anatomia & histologia , Acetilcolinesterase/metabolismo , Animais , Sistema Nervoso Autônomo/fisiologia , Imuno-Histoquímica , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neuropeptídeo Y/metabolismo , Neurotransmissores/metabolismo , Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...