Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 22(3): 268-281, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085263

RESUMO

An increasing number of studies show that platelets as well as platelet-derived microparticles (PMP) play significant roles in cancer malignancy and disease progression. Particularly, PMPs have the capacity to interact and internalize within target cells resulting in the transfer of their bioactive cargo, which can modulate the signaling and activation processes of recipient cells. We recently identified a new subpopulation of these vesicles (termed mitoMPs), which contain functional mitochondria. Given the predominant role of mitochondria in cancer cell metabolism and disease progression, we set out to investigate the impact of mitoMPs on breast cancer metabolic reprograming and phenotypic processes leading to malignancy. Interestingly, we observed that recipient cell permeability to PMP internalization varied among the breast cancer cell types evaluated in our study. Specifically, cells permissive to mitoMPs acquire mitochondrial-dependent functions, which stimulate increased cellular oxygen consumption rates and intracellular ATP levels. In addition, cancer cells co-incubated with PMPs display enhanced malignant features in terms of migration and invasion. Most importantly, the cancer aggressive processes and notable metabolic plasticity induced by PMPs were highly dependent on the functional status of the mitoMP-packaged mitochondria. These findings characterize a new mechanism by which breast cancer cells acquire foreign mitochondria resulting in the gain of metabolic processes and malignant features. A better understanding of these mechanisms may provide therapeutic opportunities through PMP blockade to deprive cancer cells from resources vital in disease progression. IMPLICATIONS: We show that the transfer of foreign mitochondria by microparticles modulates recipient cancer cell metabolic plasticity, leading to greater malignant processes.


Assuntos
Neoplasias da Mama , Micropartículas Derivadas de Células , Humanos , Feminino , Neoplasias da Mama/metabolismo , Micropartículas Derivadas de Células/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Progressão da Doença
2.
Front Neurol ; 14: 1221266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693763

RESUMO

Introduction: As the repercussions from the COVID-19 pandemic continue to unfold, an ever-expanding body of evidence suggests that infection also elicits pathophysiological manifestations within the central nervous system (CNS), known as neurological symptoms of post-acute sequelae of COVID infection (NeuroPASC). Although the neurological impairments and repercussions associated with NeuroPASC have been well described in the literature, its etiology remains to be fully characterized. Objectives: This mini-review explores the current literature that elucidates various mechanisms underlining NeuroPASC, its players, and regulators, leading to persistent neuroinflammation of affected individuals. Specifically, we provide some insights into the various roles played by microglial and astroglial cell reactivity in NeuroPASC and how these cell subsets potentially contribute to neurological impairment in response to the direct or indirect mechanisms of CNS injury. Discussion: A better understanding of the mechanisms and biomarkers associated with this maladaptive neuroimmune response will thus provide better diagnostic strategies for NeuroPASC and reveal new potential mechanisms for therapeutic intervention. Altogether, the elucidation of NeuroPASC pathogenesis will improve patient outcomes and mitigate the socioeconomic burden of this syndrome.

3.
Front Neurol ; 14: 1233192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545721

RESUMO

Long COVID syndrome, also known as post-acute sequelae of COVID-19 (PASC), is characterized by persistent symptoms lasting 3-12 weeks post SARS-CoV-2 infection. Patients suffering from PASC can display a myriad of symptoms that greatly diminish quality of life, the most frequent being neuropsychiatric. Thus, there is an eminent need to diagnose and treat PASC related neuropsychiatric manifestation (neuro-PASC). Evidence suggests that liquid biomarkers could potentially be used in the diagnosis and monitoring of patients. Undoubtedly, such biomarkers would greatly benefit clinicians in the management of patients; however, it remains unclear if these can be reliably used in this context. In this mini review, we highlight promising liquid (blood and cerebrospinal fluid) biomarkers, namely, neuronal injury biomarkers NfL, GFAP, and tau proteins as well as neuroinflammatory biomarkers IL-6, IL-10, TNF-α, and CPR associated with neuro-PASC and discuss their limitations in clinical applicability.

4.
Front Immunol ; 14: 1207631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441073

RESUMO

Background: It is well established that inflammation and platelets promote multiple processes of cancer malignancy. Recently, platelets have received attention for their role in carcinogenesis through the production of microvesicles or platelet-derived microparticles (PMPs), which transfer their biological content to cancer cells. We have previously characterized a new subpopulation of these microparticles (termed mito-microparticles), which package functional mitochondria. The potential of mitochondria transfer to cancer cells is particularly impactful as many aspects of mitochondrial biology (i.e., cell growth, apoptosis inhibition, and drug resistance) coincide with cancer hallmarks and disease progression. These metabolic aspects are particularly notable in chronic lymphocytic leukemia (CLL), which is characterized by a relentless accumulation of proliferating, immunologically dysfunctional, mature B-lymphocytes that fail to undergo apoptosis. The present study aimed to investigate the role of PMPs on CLL metabolic plasticity leading to cancer cell phenotypic changes. Methods: CLL cell lines were co-incubated with different concentrations of human PMPs, and their impact on cell proliferation, mitochondrial DNA copy number, OCR level, ATP production, and ROS content was evaluated. Essential genes involved in metabolic-reprogramming were identified using the bioinformatics tools, examined between patients with early and advanced CLL stages, and then validated in PMP-recipient CLLs. Finally, the impact of the induced metabolic reprogramming on CLLs' growth, survival, mobility, and invasiveness was tested against anti-cancer drugs Cytarabine, Venetoclax, and Plumbagin. Results: The data demonstrated the potency of PMPs in inducing tumoral growth and invasiveness in CLLs through mitochondrial internalization and OXPHOS stimulation which was in line with metabolic shift reported in CLL patients from early to advanced stages. This metabolic rewiring also improved CLL cells' resistance to Cytarabine, Venetoclax, and Plumbagin chemo drugs. Conclusion: Altogether, these findings depict a new platelet-mediated pathway of cancer pathogenesis. We also highlight the impact of PMPs in CLL metabolic reprogramming and disease progression.


Assuntos
Antineoplásicos , Micropartículas Derivadas de Células , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Micropartículas Derivadas de Células/metabolismo , Antineoplásicos/uso terapêutico , Progressão da Doença , Citarabina/metabolismo , Citarabina/uso terapêutico
5.
Cancers (Basel) ; 15(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36900344

RESUMO

Chronic lymphocytic leukemia (CLL) is a known hematologic malignancy associated with a growing incidence and post-treatment relapse. Hence, finding a reliable diagnostic biomarker for CLL is crucial. Circular RNAs (circRNAs) represent a new class of RNA involved in many biological processes and diseases. This study aimed to define a circRNA-based panel for the early diagnosis of CLL. To this point, the list of the most deregulated circRNAs in CLL cell models was retrieved using bioinformatic algorithms and applied to the verified CLL patients' online datasets as the training cohort (n = 100). The diagnostic performance of potential biomarkers represented in individual and discriminating panels, was then analyzed between CLL Binet stages and validated in individual sample sets I (n = 220) and II (n = 251). We also estimated the 5-year overall survival (OS), introduced the cancer-related signaling pathways regulated by the announced circRNAs, and provided a list of possible therapeutic compounds to control the CLL. These findings show that the detected circRNA biomarkers exhibit better predictive performance compared to current validated clinical risk scales, and are applicable for the early detection and treatment of CLL.

6.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077495

RESUMO

PAX5, a member of the Paired Box (PAX) transcription factor family, is an essential factor for B-lineage identity during lymphoid differentiation. Mechanistically, PAX5 controls gene expression profiles, which are pivotal to cellular processes such as viability, proliferation, and differentiation. Given its crucial function in B-cell development, PAX5 aberrant expression also correlates with hallmark cancer processes leading to hematological and other types of cancer lesions. Despite the well-established association of PAX5 in the development, maintenance, and progression of cancer disease, the use of PAX5 as a cancer biomarker or therapeutic target has yet to be implemented. This may be partly due to the assortment of PAX5 expressed products, which layers the complexity of their function and role in various regulatory networks and biological processes. In this review, we provide an overview of the reported data describing PAX5 products, their regulation, and function in cellular processes, cellular biology, and neoplasm.


Assuntos
Fator de Transcrição PAX5 , Proteínas , Diferenciação Celular/genética , Hematopoese , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo
7.
EMBO Rep ; 23(11): e54910, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36125343

RESUMO

Inflammation is an essential process of host defense against infections, illness, or tissue damage. Polymorphonuclear neutrophils (PMN) are among the first immune cells involved in acute inflammatory responses and are on the front line in the fight against bacterial infections. In the presence of bacterial fragments, PMN release inflammatory mediators, enzymes, and microvesicles in the extracellular milieu to recruit additional immune cells required to eliminate the pathogens. Recent evidence shows that platelets (PLTs), initially described for their role in coagulation, are involved in inflammatory responses. Furthermore, upon activation, PLT also release functional mitochondria (freeMitos) within their extracellular milieu. Mitochondria share characteristics with bacterial and mitochondrial damage-associated molecular patterns, which are important contributors in sterile inflammation processes. Deep sequencing transcriptome analysis demonstrates that freeMitos increase the mitochondrial gene expression in PMN. However, freeMitos do not affect the mitochondrial-dependent increase in oxygen consumption in PMN. Interestingly, freeMitos significantly induce the release of PMN-derived microvesicles. This study provides new insight into the role of freeMitos in the context of sterile inflammation.


Assuntos
Mitocôndrias , Neutrófilos , Humanos , Neutrófilos/metabolismo , Inflamação/metabolismo
8.
Clin Cosmet Investig Dermatol ; 14: 425-436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986606

RESUMO

Although the erythema migrans (EM) skin rash is traditionally considered a hallmark of Lyme disease, other dermatological manifestations of the tickborne disease are less well known. We describe a 49-year-old woman with erosive genital ulcerations, secondary EM rashes and jagged skin lesions associated with Lyme disease. The skin rashes exhibited fibers characteristic of Morgellons disease. Molecular testing confirmed the presence of Borrelia DNA in both vaginal culture and serum specimens. In further studies on a secondary EM lesion containing filaments, Gömöri trichrome staining revealed the presence of collagen in the filaments, while Dieterle and anti-Borrelia immunostaining revealed intracellular and extracellular Borrelia organisms. Intracellular staining for Borrelia was also observed in lymphocytic infiltrates. Lyme disease may present with a variety of genital lesions and dermatological manifestations including Morgellons disease. Careful evaluation is required to determine the presence of Borrelia organisms associated with these dermopathies.

9.
Cells ; 11(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011638

RESUMO

The Pax-5 gene encodes a transcription factor that is essential for B-cell commitment and maturation. However, Pax-5 deregulation is associated with various cancer lesions, notably hematopoietic cancers. Mechanistically, studies have characterized genetic alterations within the Pax-5 locus that result in either dominant oncogenic function or haploinsufficiency-inducing mutations leading to oncogenesis. Apart from these mutations, some examples of aberrant Pax-5 expression cannot be associated with genetic alterations. In the present study, we set out to elucidate potential alterations in post-transcriptional regulation of Pax-5 expression and establish that Pax-5 transcript editing represents an important means to aberrant expression. Upon the profiling of Pax-5 mRNA in leukemic cells, we found that the 3'end of the Pax-5 transcript is submitted to alternative polyadenylation (APA) and alternative splicing events. Using rapid amplification of cDNA ends (3'RACE) from polysomal fractions, we found that Pax-5 3' untranslated region (UTR) shortening correlates with increased ribosomal occupancy for translation. These observations were also validated using reporter gene assays with truncated 3'UTR regions cloned downstream of a luciferase gene. We also showed that Pax-5 3'UTR editing has direct repercussions on regulatory elements such as miRNAs, which in turn impact Pax-5 protein expression. More importantly, we found that advanced staging of various hematopoietic cancer lesions relates to shorter Pax-5 3'UTRs. Altogether, our findings identify novel molecular mechanisms that account for aberrant expression and function of the Pax-5 oncogene in cancer cells. These findings also present new avenues for strategic intervention in Pax-5-mediated cancers.


Assuntos
Regiões 3' não Traduzidas/genética , Edição de Genes , Fator de Transcrição PAX5/genética , Processamento Alternativo/genética , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Fator de Transcrição PAX5/metabolismo , Poliadenilação/genética , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Carcinogenesis ; 40(8): 1010-1020, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30605519

RESUMO

Recent studies have enabled the identification of important factors regulating cancer progression, such as paired box gene 5 (Pax-5). This transcription factor has consistently been associated to B-cell cancer lesions and more recently solid tumors including breast carcinoma. Although Pax-5 downstream activity is relatively well characterized, aberrant Pax-5 expression in a cancer-specific context is poorly understood. To investigate the regulation of Pax-5 expression, we turned to micro RNAs (miRNAs), small non-coding RNA molecules that regulate key biological processes. Extensive studies show that miRNA deregulation is prevalent in cancer lesions. In this study, we aim to elucidate a causal link between differentially expressed miRNAs in cancer cells and their putative targeting of Pax-5-dependent cancer processes. Bioinformatic prediction tools indicate that miRNAs 484 and 210 are aberrantly expressed in breast cancer and predicted to target Pax-5 messenger RNA (mRNA). Through conditional modulation of these miRNAs in breast cancer cells, we demonstrate that miRNAs 484 and 210 inhibit Pax-5 expression and regulate Pax-5-associated cancer processes. In validation, we show that these effects are probably caused by direct miRNA/mRNA interaction, which are reversible by Pax-5 recombinant expression. Interestingly, miRNAs 484 and 210, which are both overexpressed in clinical tumor samples, are also modulated during epithelial-mesenchymal transitioning and hypoxia that correlate inversely to Pax-5 expression. This is the first study demonstrating the regulation of Pax-5 expression and function by non-coding RNAs. These findings will help us better understand Pax-5 aberrant expression within cancer cells, creating the possibility for more efficient diagnosis and treatments for cancer patients.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Fator de Transcrição PAX5/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , RNA Mensageiro/genética , Fatores de Transcrição/genética , Hipóxia Tumoral/genética
11.
Anticancer Res ; 38(9): 5013-5026, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30194145

RESUMO

BACKGROUND/AIM: In breast cancer, Pax-5 promotes pro-epithelial features and suppresses malignant cancer processes. However, the molecular mechanism of this antitumor activity remains largely unknown. This study aimed to identify the cellular roles of Pax-5-regulated miRNAs in breast cancer progression. MATERIALS AND METHODS: After transient transfection of Pax-5 in MDA-MB-231 breast cancer cells, Pax-5-regulated miRNA expression was examined by next-generation sequencing. The identified Pax-5-regulated miRNAs were then validated by qRT-PCR and examined for the roles they play in breast cancer cells. RESULTS: Pax-5 was shown to be an effective modulator of miR-215-5p and its target genes. MiR-215 inhibited cell proliferation and migration of breast cancer cells, but not cell invasion. More importantly, Pax-5-induced suppression of cancer cell proliferation and migration was found to be miR-215-dependent. Interestingly, miR-215 profiling in clinical tumor samples showed that miR-215 expression was lower in cancer tissues in comparison to healthy controls. CONCLUSION: Pax-5 reduces breast cancer proliferation and migration through up-regulation of the tumor suppressor miR-215. This result supports the use of miR-215 as a prognostic marker for breast cancer.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Fator de Transcrição PAX5/genética , Regulação para Cima , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de RNA
12.
J Mammary Gland Biol Neoplasia ; 23(3): 177-187, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30032344

RESUMO

Pax-5, an essential transcription factor in B cell development, is aberrantly expressed in various B cell cancer lesions and solid tumors such as breast carcinoma. We have recently shown that Pax-5 regulates NF-κB activity which lead to the modulation of breast cancer phenotypic features (EMT-MET). NF-κB is known as a central mediator in inflammation, stress response as well as being a gatekeeper of pro-tumorigenic activity. However, little is known as to how Pax-5 affects this modulation. We thus turned our attention to microRNAs as potential regulatory effectors. In this study, we set out to elucidate the regulatory network between differential Pax-5 expression and NF-κB activity which dictate breast cancer malignancy. Through next-generation sequencing (NGS) of breast cancer cells conditionally expressing Pax-5, we profile significantly upregulated microRNAs; including microRNA-155, a known regulator of pathological processes and suppressor of malignant growth. Through the conditional expression of microRNA-155 in breast cancer models, we identify and validate IKKε (IKBKE) as a downstream target and an essential effector of Pax-5-mediated suppression of NF-κB signaling. Using rescue experiments, we also confirm that Pax-5 modulates NF-κB activity via IKKε downregulation. Interestingly, we also show that microRNA-155, in turn, supresses Pax-5 expression, indicative of an auto-regulatory feedback loop. Altogether, we demonstrate that Pax-5 inhibits NF-κB signalling through the regulation of microRNA-155 and its downstream target IKKε. The elucidation of this signaling network is relevant as Pax-5 and NF-κB are potent transcriptional regulators of breast cancer aggressivity. In addition, IKKε is relevant oncogene aberrantly expressed in 30% of breast carcinomas. Further insight into the regulatory pathways of breast cancer progression will eventually identify strategic therapeutic and prognostic targets to improve cancer patient outcome.


Assuntos
Neoplasias da Mama/genética , Quinase I-kappa B/genética , MicroRNAs/genética , NF-kappa B/genética , Fator de Transcrição PAX5/genética , Mama/patologia , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Transdução de Sinais/genética
13.
Oncotarget ; 8(7): 12052-12066, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28076843

RESUMO

Pax-5, an essential transcription factor for B lymphocyte development, has been linked with the development and progression of lymphoid cancers and carcinoma. In contrast to B-cell cancer lesions, the specific expression signatures and roles of Pax-5 in breast cancer progression are relatively unknown. In the present study, we set out to profile Pax-5 expression in mammary tissues and elucidate the cellular and molecular roles of Pax-5 in breast cancer processes. Using immunohistology on mammary tissue arrays, Pax-5 was detected in a total of 298/306 (97.6%) samples tested. Interestingly, our studies reveal that Pax-5 inhibits aggressive features and confers anti-proliferative effects in breast carcinoma cells in contrast to its oncogenic properties in B cell cancers. More precisely, Pax-5 suppressed breast cancer cell migration, invasion and tumor spheroid formation while concomitantly promoting cell adhesion properties. We also observed that Pax-5 inhibited and reversed breast cancer epithelial to mesenchymal phenotypic transitioning. Mechanistically, we found that the Pax-5 transcription factor binds and induces gene expression of E-cadherin, a pivotal regulator of epithelialisation. Globally, we demonstrate that Pax-5 is predominant expressed factor in mammary epithelial cells. We also present an important role for Pax-5 in the phenotypic transitioning processes and aggressive features associated with breast cancer malignancy and disease progression.


Assuntos
Neoplasias da Mama/genética , Caderinas/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX5/genética , Antígenos CD , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Adesão Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Células MCF-7 , Glândulas Mamárias Humanas/metabolismo , Fator de Transcrição PAX5/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Cancer ; 7(14): 2035-2044, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28070224

RESUMO

The study of genetic factors regulating breast cancer malignancy is a top priority to mitigate the morbidity and mortality associated with this disease. One of these factors, Pax-5, modulates cancer aggressiveness through the regulation of various components of the epithelial to mesenchymal transitioning (EMT) process. We have previously reported that Pax-5 expression profiles in cancer tissues inversely correlate with those of the Focal Adhesion Kinase (FAK), a potent activator of breast cancer malignancy. In this study, we set out to elucidate the molecular and regulatory relationship between Pax-5 and FAK in breast cancer processes. Interestingly, we found that Pax-5 mediated suppression of breast cancer cell migration is dependent of FAK activity. Our mechanistic examination revealed that Pax-5 inhibits FAK expression and activation. We also demonstrate that Pax-5 is a potent modulator of FAK repressors (p53 and miR-135b) and activator (NFκB) which results in the overall suppression of FAK-mediated signaling cascades. Altogether, our findings bring more insight to the molecular triggers regulating phenotypic transitioning process and signaling cascades leading to breast cancer progression.

15.
Mol Carcinog ; 55(7): 1150-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26207726

RESUMO

Mammaglobin 1 (MGB1), a member of the secretoglobin family, is expressed in mammary epithelial tissues and is overexpressed in most mammary carcinomas. Despite the extensive research correlating MGB1 expression profiles to breast cancer pathogenesis and disease outcome, the biological significance of MGB1 in cancer processes is still unclear. We have thus set out to conduct a functional evaluation of the molecular and cellular roles of MGB1 in breast cancer processes leading to disease progression. Using a series of breast cancer cell models with conditional MGB1 expression, we demonstrate that MGB1 promotes cancer cell malignant features. More specifically, loss of MGB1 expression resulted in a decrease of cell proliferation, soft agar spheroid formation, migration, and invasion capacities of breast cancer cells. Concomitantly, we also observed that MGB1 expression activates signaling pathways mediated by MAPK members (p38, JNK, and ERK), the focal adhesion kinase (FAK), matrix metalloproteinases (MMPs) and NFκB. Moreover, MGB1 regulates epithelial to mesenchymal (EMT) features and modulates Snail, Twist and ZEB1 expression levels. Interestingly, we also observed that expression of MGB1 confers breast cancer cell sensitivity to anticancer drug-induced apoptosis. Together, our results support a role for MGB1 in tumor malignancy in exchange for chemosensitivity. These findings provide one of the first descriptive overview of the molecular and cellular roles of MGB1 in breast cancer processes and may offer new insight to the development of therapeutic and prognostic strategies in breast cancer patients. © 2015 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Mamoglobina A/genética , Mamoglobina A/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Invasividade Neoplásica , Transdução de Sinais , Regulação para Cima
16.
Nat Prod Commun ; 10(10): 1641-2, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26669092

RESUMO

Antimycobacterial extracts of a Penicillium sp. (isolate HL4-159-41B) and a Coniothyrium sp. (isolate HL6-097-027B) isolated from the rhizomes of the Canadian medicinal plant Aralia nudicaulis were found to contain palitantin (1) and botrallin (2), craterellin C (3), mycosporulone (4), spiromassaritone (5), and massarigenin D (6) respectively. Bioassays against Mycobacterium tuberculosis H37Ra revealed that 1 - 4 possess moderate antimycobacterial activity.


Assuntos
Antituberculosos/farmacologia , Aralia/microbiologia , Ascomicetos/metabolismo , Endófitos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Ascomicetos/química , Endófitos/química , Células HEK293 , Humanos , Estrutura Molecular
17.
Nat Prod Commun ; 10(10): 1647-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26669094

RESUMO

An extract of an unidentified endophyte from the Canadian medicinal plant Heracleum maximum exhibited a unique metabolomic profile and significant antimycobacterial activity against Mycobacterium tuberculosis H37Ra. Bioassay guided fractionation of the extract led to the isolation of phomopsolide A (1) and 6(E)-phomopsolide A (2). This is the first report of antimycobacterial activity for 1 and 2.


Assuntos
Antituberculosos/farmacologia , Endófitos/química , Heracleum/química , Plantas Medicinais/química , Antituberculosos/química , Produtos Biológicos , Canadá , Estrutura Molecular , Pironas/química
18.
J Nat Prod ; 78(11): 2837-40, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26473275

RESUMO

Two new dibenz[b,f]oxepins, empetroxepins A and B (1 and 2), and seven known compounds (3-9) were isolated from an extract of the Canadian medicinal plant Empetrum nigrum that significantly inhibited the growth of Mycobacterium tuberculosis H37Ra. The structures of 1 and 2 were established through analysis of NMR and MS data. The antimycobacterial activity of the plant extract was attributed primarily to the presence of two chalcone derivatives (6 and 7) that exhibited selective antimycobacterial activity (IC50 values of 23.8 and 32.8 µM, respectively) in comparison to mammalian (HEK 293) cells (IC50 values of 109 and 249 µM, respectively).


Assuntos
Antituberculosos/isolamento & purificação , Antituberculosos/farmacologia , Benzoxepinas/isolamento & purificação , Benzoxepinas/farmacologia , Chalcona/isolamento & purificação , Chalcona/farmacologia , Ericaceae/química , Mycobacterium tuberculosis/efeitos dos fármacos , Oxepinas/isolamento & purificação , Oxepinas/farmacologia , Animais , Antituberculosos/química , Benzoxepinas/química , Canadá , Chalcona/química , Células HEK293 , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oxepinas/química
19.
Molecules ; 20(7): 12576-89, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26184141

RESUMO

Breast cancer is the second leading cause of death amongst women worldwide. As a result, many have turned their attention to new alternative approaches to treat this disease. Caffeic acid phenylethyl ester (CAPE), a well-known active compound from bee propolis, has been previously identified as a strong antioxidant, anti-inflammatory, antiviral and anticancer molecule. In fact, CAPE is well documented as inducing cell death by inhibiting NFκB and by inducing pro-apoptotic pathways (i.e., p53). With the objective of developing stronger anticancer compounds, we studied 18 recently described CAPE derivatives for their ability to induce apoptosis in breast cancer cell lines. Five of the said compounds, including CAPE, were selected and subsequently characterised for their anticancer mechanism of action. We validated that CAPE is a potent inducer of caspase-dependent apoptosis. Interestingly, some newly synthesized CAPE derivatives also showed greater cell death activity than the lead CAPE structure. Similarly to CAPE, analog compounds elicited p53 activation. Interestingly, one compound in particular, analog 10, induced apoptosis in a p53-mutated cell line. These results suggest that our new CAPE analog compounds may display the capacity to induce breast cancer apoptosis in a p53-dependent and/or independent manner. These CAPE analogs could thus provide new therapeutic approaches for patients with varying genotypic signatures (such as p53 mutations) in a more specific and targeted fashion.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Álcool Feniletílico/análogos & derivados , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Ácidos Cafeicos/síntese química , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Radicais Livres/antagonistas & inibidores , Radicais Livres/química , Genes Reporter , Humanos , Concentração Inibidora 50 , Luciferases/genética , Luciferases/metabolismo , Células MCF-7 , Mutação , Álcool Feniletílico/síntese química , Álcool Feniletílico/farmacologia , Picratos/antagonistas & inibidores , Picratos/química , Transdução de Sinais , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Anticancer Agents Med Chem ; 15(1): 79-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24913660

RESUMO

The study of anticancer properties from natural products has regained popularity as natural molecules provide a high diversity of chemical structures with specific biological and medicinal activity. Based on a documented library of the most common medicinal plants used by the indigenous people of North America, we screened and isolated compounds with anti-breast cancer properties from Juniperus communis (common Juniper). Using bioassay-guided fractionation of a crude plant extract, we identified the diterpene isocupressic acid and the aryltetralin lignan deoxypodophyllotoxin (DPT) as potent inducers of caspase-dependent programmed cell death (apoptosis) in malignant MB231 breast cancer cells. Further elucidation revealed that DPT, in contrast to isocupressic acid, also concomitantly inhibited cell survival pathways mediated by the MAPK/ERK and NFκB signaling pathways within hours of treatment. Our findings emphasize the potential and importance of natural product screening for new chemical entities with novel anticancer activities. Natural products research complemented with the wealth of information available through the ethnobotanical and ethnopharmacological knowledge of the indigenous peoples of North America can provide new candidate entities with desirable bioactivities to develop new cancer therapies.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Juniperus/química , Podofilotoxina/análogos & derivados , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Neoplasias da Mama/metabolismo , Ácidos Carboxílicos/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Diterpenos/farmacologia , Medicamentos de Ervas Chinesas , Feminino , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Podofilotoxina/química , Podofilotoxina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tetra-Hidronaftalenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...