Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Immunology ; 12(12): e1480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090669

RESUMO

Objectives: Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to myelin sheaths. While all current disease-modifying treatments (DMTs) are very effective at reducing relapses, they do not slow the progression of the disease, and there is little evidence that these treatments are able to repair or remyelinate damaged axons. Recent evidence suggests that activating kappa opioid receptors (KORs) has a beneficial effect on the progression of MS, and this study investigates the effects of KOR agonists treatment in combination with two current DMTs. Methods: Using the well-established murine model for immune-driven demyelination of MS, experimental autoimmune encephalomyelitis, the effect of KOR agonists in combination with DMTs fingolimod or dimethyl fumarate on disease progression, immune cell infiltration and activation as well as myelination were analysed. Results: Fingolimod in combination with the KOR agonist, nalfurafine, significantly increased each individual beneficial effect as measured by increased recovery of mice and reduced relapses. These beneficial effects correlated with a reduction in immune cell infiltration into the CNS as well as peripheral immune cell alterations including a reduction in autoreactive CD4+ T-cell cytokine production as well as increased myelination in the spinal cords of co-treated animals. In contrast, while the use of dimethyl fumarate in combination with nalfurafine did not adversely affect the benefits of nalfurafine, the combination did not significantly enhance those benefits. Conclusion: This study indicates that KOR agonists can be used in combination with fingolimod and dimethyl fumarate with the nalfurafine-fingolimod combination providing enhanced benefits.

2.
Cell Signal ; 99: 110449, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031090

RESUMO

Multiple sclerosis is a disease characterised by demyelination of axons in the central nervous system. The atypical antipsychotic drug clozapine has been shown to attenuate disease severity in experimental autoimmune encephalomyelitis (EAE), a mouse model that is useful for the study of multiple sclerosis. However, the mechanism of action by which clozapine reduces disease in EAE is poorly understood. To better understand how clozapine exerts its protective effects, we investigated the underlying signalling pathways by which clozapine may reduce immune cell migration by evaluating chemokine and dopamine receptor-associated signalling pathways. We found that clozapine inhibits migration of immune cells by reducing chemokine production in microglia cells by targeting NF-κB phosphorylation and promoting an anti-inflammatory milieu. Furthermore, clozapine directly targets immune cell migration by changing Ca2+ levels within immune cells and reduces the phosphorylation of signalling protein AKT. Linking these pathways to the antagonising effect of clozapine on dopamine and serotonin receptors, we provide insight into how clozapine alters immune cells migration by directly targeting the underlying migration-associated pathways.


Assuntos
Antipsicóticos , Clozapina , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Anti-Inflamatórios/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Quimiocinas , Clozapina/farmacologia , Clozapina/uso terapêutico , Dopamina , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Dopaminérgicos/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34725148

RESUMO

The leaf homogenate of Psychotria insularum is widely used in Samoan traditional medicine to treat inflammation associated with fever, body aches, swellings, wounds, elephantiasis, incontinence, skin infections, vomiting, respiratory infections, and abdominal distress. However, the bioactive components and underlying mechanisms of action are unknown. We used chemical genomic analyses in the model organism Saccharomyces cerevisiae (baker's yeast) to identify and characterize an iron homeostasis mechanism of action in the traditional medicine as an unfractionated entity to emulate its traditional use. Bioactivity-guided fractionation of the homogenate identified two flavonol glycosides, rutin and nicotiflorin, each binding iron in an ion-dependent molecular networking metabolomics analysis. Translating results to mammalian immune cells and traditional application, the iron chelator activity of the P. insularum homogenate or rutin decreased proinflammatory and enhanced anti-inflammatory cytokine responses in immune cells. Together, the synergistic power of combining traditional knowledge with chemical genomics, metabolomics, and bioassay-guided fractionation provided molecular insight into a relatively understudied Samoan traditional medicine and developed methodology to advance ethnobotany.


Assuntos
Anti-Inflamatórios/análise , Flavonoides/isolamento & purificação , Quelantes de Ferro/análise , Fenóis/isolamento & purificação , Psychotria/química , Rutina/isolamento & purificação , Animais , Avaliação Pré-Clínica de Medicamentos , Etnobotânica , Feminino , Genômica , Masculino , Medicina Tradicional , Metabolômica , Camundongos Endogâmicos C57BL , Plantas Medicinais/química , Saccharomyces cerevisiae , Samoa
4.
Sci Rep ; 11(1): 2966, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536582

RESUMO

Multiple sclerosis is a disease characterised by axonal demyelination in the central nervous system (CNS). The atypical antipsychotic drug clozapine attenuates experimental autoimmune encephalomyelitis (EAE), a mouse model used to study multiple sclerosis, but the precise mechanism is unknown and could include both peripheral and CNS-mediated effects. To better understand where clozapine exerts its protective effects, we investigated the tissue distribution and localisation of clozapine using matrix-assisted laser desorption ionization imaging mass spectrometry and liquid chromatography-mass spectrometry. We found that clozapine was detectable in the brain and enriched in specific brain regions (cortex, thalamus and olfactory bulb), but the distribution was not altered by EAE. Furthermore, although not altered in other organs, clozapine levels were significantly elevated in serum during EAE. Because clozapine antagonises dopamine receptors, we analysed dopamine levels in serum and brain as well as dopamine receptor expression on brain-resident and infiltrating immune cells. While neither clozapine nor EAE significantly affected dopamine levels, we observed a significant downregulation of dopamine receptors 1 and 5 and up-regulation of dopamine receptor 2 on microglia and CD4+-infiltrating T cells during EAE. Together these findings provide insight into how neuroinflammation, as modelled by EAE, alters the distribution and downstream effects of clozapine.


Assuntos
Clozapina/farmacocinética , Dopamina/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Receptores Dopaminérgicos/metabolismo , Animais , Antipsicóticos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linfócitos T CD4-Positivos/metabolismo , Clozapina/administração & dosagem , Dopamina/sangue , Regulação para Baixo/efeitos dos fármacos , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Camundongos , Microglia/metabolismo , Microglia/patologia , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Glicoproteína Mielina-Oligodendrócito/imunologia , Distribuição Tecidual , Regulação para Cima/efeitos dos fármacos
5.
Clin Transl Immunology ; 10(1): e1234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33489124

RESUMO

OBJECTIVES: Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to the myelin sheath, resulting in physical and cognitive disability. There is currently no cure for MS, and finding effective treatments to prevent disease progression has been challenging. Recent evidence suggests that activating kappa opioid receptors (KOR) has a beneficial effect on the progression of MS. Although many KOR agonists like U50,488 are not suitable for clinical use because of a poor side-effect profile, nalfurafine is a potent, clinically used KOR agonist with a favorable side-effect profile. METHODS: Using the experimental autoimmune encephalomyelitis (EAE) model, the effect of therapeutically administered nalfurafine or U50,488 on remyelination, CNS infiltration and peripheral immune responses were compared. Additionally, the cuprizone model was used to compare the effects on non-immune demyelination. RESULTS: Nalfurafine enabled recovery and remyelination during EAE. Additionally, it was more effective than U50,488 and promoted disease reduction when administered after chronic demyelination. Blocking KOR with the antagonist, nor-BNI, impaired full recovery by nalfurafine, indicating that nalfurafine mediates recovery from EAE in a KOR-dependent fashion. Furthermore, nalfurafine treatment reduced CNS infiltration (especially CD4+ and CD8+ T cells) and promoted a more immunoregulatory environment by decreasing Th17 responses. Finally, nalfurafine was able to promote remyelination in the cuprizone demyelination model, supporting the direct effect on remyelination in the absence of peripheral immune cell invasion. CONCLUSIONS: Overall, our findings support the potential of nalfurafine to promote recovery and remyelination and highlight its promise for clinical use in MS.

6.
Front Neurol ; 12: 782190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987466

RESUMO

Multiple sclerosis is a neurodegenerative disease associated with demyelination and neuroinflammation in the central nervous system. There is an urgent need to develop remyelinating therapies to better treat multiple sclerosis and other demyelinating diseases. The kappa opioid receptor (KOR) has been identified as a potential target for the development of remyelinating therapies; however, prototypical KOR agonists, such as U50,488 have side effects, which limit clinical use. In the current study, we investigated a Salvinorin A analog, ethoxymethyl ether Salvinorin B (EOM SalB) in two preclinical models of demyelination in C57BL/6J mice. We showed that in cellular assays EOM SalB was G-protein biased, an effect often correlated with fewer KOR-mediated side effects. In the experimental autoimmune encephalomyelitis model, we found that EOM SalB (0.1-0.3 mg/kg) effectively decreased disease severity in a KOR-dependent manner and led to a greater number of animals in recovery compared to U50,488 treatment. Furthermore, EOM SalB treatment decreased immune cell infiltration and increased myelin levels in the central nervous system. In the cuprizone-induced demyelination model, we showed that EOM SalB (0.3 mg/kg) administration led to an increase in the number of mature oligodendrocytes, the number of myelinated axons and the myelin thickness in the corpus callosum. Overall, EOM SalB was effective in two preclinical models of multiple sclerosis and demyelination, adding further evidence to show KOR agonists are a promising target for remyelinating therapies.

7.
PLoS Pathog ; 16(10): e1008461, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33002089

RESUMO

The induction of an interferon-mediated response is the first line of defense against pathogens such as viruses. Yet, the dynamics and extent of interferon alpha (IFNα)-induced antiviral genes vary remarkably and comprise three expression clusters: early, intermediate and late. By mathematical modeling based on time-resolved quantitative data, we identified mRNA stability as well as a negative regulatory loop as key mechanisms endogenously controlling the expression dynamics of IFNα-induced antiviral genes in hepatocytes. Guided by the mathematical model, we uncovered that this regulatory loop is mediated by the transcription factor IRF2 and showed that knock-down of IRF2 results in enhanced expression of early, intermediate and late IFNα-induced antiviral genes. Co-stimulation experiments with different pro-inflammatory cytokines revealed that this amplified expression dynamics of the early, intermediate and late IFNα-induced antiviral genes can also be achieved by co-application of IFNα and interleukin1 beta (IL1ß). Consistently, we found that IL1ß enhances IFNα-mediated repression of viral replication. Conversely, we observed that in IL1ß receptor knock-out mice replication of viruses sensitive to IFNα is increased. Thus, IL1ß is capable to potentiate IFNα-induced antiviral responses and could be exploited to improve antiviral therapies.


Assuntos
Regulação Viral da Expressão Gênica/efeitos dos fármacos , Fator Regulador 2 de Interferon/metabolismo , Interferon-alfa/farmacologia , Coriomeningite Linfocítica/tratamento farmacológico , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Fator Regulador 2 de Interferon/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estabilidade de RNA
8.
J Neuroinflammation ; 17(1): 53, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050980

RESUMO

BACKGROUND: Atypical antipsychotic agents, such as clozapine, are used to treat schizophrenia and other psychiatric disorders by a mechanism that is believed to involve modulating the immune system. Multiple sclerosis is an immune-mediated neurological disease, and recently, clozapine was shown to reduce disease severity in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). However, the mode of action by which clozapine reduces disease in this model is poorly understood. METHODS: Because the mode of action by which clozapine reduces neuroinflammation is poorly understood, we used the EAE model to elucidate the in vivo and in vitro effects of clozapine. RESULTS: In this study, we report that clozapine treatment reduced the infiltration of peripheral immune cells into the central nervous system (CNS) and that this correlated with reduced expression of the chemokines CCL2 and CCL5 transcripts in the brain and spinal cord. We assessed to what extent immune cell populations were affected by clozapine treatment and we found that clozapine targets the expression of chemokines by macrophages and primary microglia. Furthermore, in addition to decreasing CNS infiltration by reducing chemokine expression, we found that clozapine directly inhibits chemokine-induced migration of immune cells. This direct target on the immune cells was not mediated by a change in receptor expression on the immune cell surface but by decreasing downstream signaling via these receptors leading to a reduced migration. CONCLUSIONS: Taken together, our study indicates that clozapine protects against EAE by two different mechanisms; first, by reducing the chemoattractant proteins in the CNS; and second, by direct targeting the migration potential of peripheral immune cells.


Assuntos
Encéfalo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Clozapina/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Medula Espinal/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Antagonistas da Serotonina/farmacologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...