Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36554930

RESUMO

The purpose of the study is to determine the impact of local heating on skeletal muscle transcriptional response related to mitochondrial biogenesis and mitophagy. Twelve healthy subjects (height, 176.0 ± 11.9 cm; weight, 83.6 ± 18.3 kg; and body composition, 19.0 ± 7.7% body fat) rested in a semi-reclined position for 4 h with a heated thermal wrap (HOT) around one thigh and a wrap without temperature regulation (CON) around the other (randomized). Skin temperature, blood flow, intramuscular temperature, and a skeletal muscle biopsy from the vastus lateralis were obtained after the 4 h intervention. Skin temperature via infrared thermometer and thermal camera was higher after HOT (37.3 ± 0.7 and 36.7 ± 1.0 °C, respectively) than CON (34.8 ± 0.7, 35.2 ± 0.8 °C, respectively, p < 0.001). Intramuscular temperature was higher in HOT (36.3 ± 0.4 °C) than CON (35.2 ± 0.8 °C, p < 0.001). Femoral artery blood flow was higher in HOT (304.5 ± 12.5 mL‧min-1) than CON (272.3 ± 14.3 mL‧min-1, p = 0.003). Mean femoral shear rate was higher in HOT (455.8 ± 25.1 s-1) than CON (405.2 ± 15.8 s-1, p = 0.019). However, there were no differences in any of the investigated genes related to mitochondrial biogenesis (PGC-1α, NRF1, GAPBA, ERRα, TFAM, VEGF) or mitophagy (PINK-1, PARK-2, BNIP-3, BNIP-3L) in response to heat (p > 0.05). These data indicate that heat application alone does not impact the transcriptional response related to mitochondrial homeostasis, suggesting that other factors, in combination with skeletal muscle temperature, are involved with previous observations of altered exercise induced gene expression with heat.


Assuntos
Temperatura Alta , Mitocôndrias , Humanos , Músculo Esquelético/fisiologia , Temperatura Baixa , Temperatura Cutânea
2.
Artigo em Inglês | MEDLINE | ID: mdl-36231330

RESUMO

The purpose of this study was to determine the impact of localized cooling of the skeletal muscle during rest on mitochondrial related gene expression. Thermal wraps were applied to the vastus lateralis of each limb of 12 participants. One limb received a cold application (randomized) (COLD), while the other did not (RT). Wraps were removed at the 4 h time point and measurements of skin temperature, blood flow, and intramuscular temperature were taken prior to a muscle biopsy. RT-qPCR was used to measure expression of genes associated with mitochondrial development. Skin and muscle temperatures were lower in COLD than RT (p < 0.05). Femoral artery diameter was lower in COLD after 4 h (0.62 ± 0.05 cm, to 0.60 ± 0.05 cm, p = 0.018). Blood flow was not different in COLD compared to RT (259 ± 69 mL·min-1 vs. 275 ± 54 mL·min-1, p = 0.20). PGC-1α B and GABPA expression was higher in COLD relative to RT (1.57-fold, p = 0.037 and 1.34-fold, p = 0.006, respectively). There was no difference (p > 0.05) in the expression of PGC-1α, NT-PGC-1α, PGC-1α A, TFAM, ESRRα, NRF1, GABPA, VEGF, PINK1, PARK 2, or BNIP3-L. The impact of this small magnitude of difference in gene expression of PGC-1α B and GABPA without alterations in other genes are unknown. There appears to be only limited impact of local muscle cooling on the transcriptional response related to mitochondrial development.


Assuntos
Exercício Físico , Fator A de Crescimento do Endotélio Vascular , Exercício Físico/fisiologia , Expressão Gênica , Humanos , Músculo Esquelético/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Nanoscale Adv ; 4(8): 2036-2045, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133417

RESUMO

The presence of electrostatic forces and associated artifacts complicates the interpretation of piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). Eliminating these artifacts provides an opportunity for precisely mapping domain wall structures and dynamics, accurately quantifying local piezoelectric coupling coefficients, and reliably investigating hysteretic processes at the single nanometer scale to determine properties and mechanisms which underly important applications including computing, batteries and biology. Here we exploit the existence of an electrostatic blind spot (ESBS) along the length of the cantilever, due to the distributed nature of the electrostatic force, which can be universally used to separate unwanted long range electrostatic contributions from short range electromechanical responses of interest. The results of ESBS-PFM are compared to state-of-the-art interferometric displacement sensing PFM, showing excellent agreement above their respective noise floors. Ultimately, ESBS-PFM allows for absolute quantification of piezoelectric coupling coefficients independent of probe, lab or experimental conditions. As such, we expect the widespread adoption of EBSB-PFM to be a paradigm shift in the quantification of nanoscale electromechanics.

4.
Bioorg Med Chem ; 21(18): 5770-81, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23928070

RESUMO

A series of twenty-two BODIPY compounds were synthesized, containing various meso-phenyl and meso-thienyl groups, and their spectroscopic and structural properties were investigated using both experimental and computational methods. Further functionalization of the BODIPY framework via iodination at the 2,6-pyrrolic positions was explored in order to determine the effect of these heavy atoms on the photophysical and cytotoxicity of the meso-aryl-BODIPYs. BODIPYs bearing meso-thienyl substituents showed the largest red-shifted absorptions and emissions and reduced fluorescence quantum yields. The phototoxicity of the BODIPYs in human carcinoma HEp2 cells depends on both the presence of iodines and the nature of the meso-aryl groups. Six of the eleven 2,6-diiodo-BODIPYs investigated showed at least a sevenfold enhancement in phototoxicity (IC50 = 3.5-28 µM at 1.5 J/cm(2)) compared with the non-iodinated BODIPYs, while the others showed no cytotoxicity, while their singlet oxygen quantum yields ranged from 0.02 to 0.76. Among the series investigated, BODIPYs 2a and 4a bearing electron-donating meso-dimethoxyphenyl substituents showed the highest phototoxicity and dark/phototoxicity ratio, and are therefore the most promising for application in PDT.


Assuntos
Compostos de Boro/química , Apoptose/efeitos dos fármacos , Compostos de Boro/síntese química , Compostos de Boro/toxicidade , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Iodo/química , Conformação Molecular , Pirróis/química , Teoria Quântica , Oxigênio Singlete/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...