Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10556, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732669

RESUMO

There is increasing need for biodiversity monitoring, especially in places where potential anthropogenic disturbance may significantly impact ecosystem health. We employed a combination of traditional morphological and bulk macroinvertebrate metabarcoding analyses to benthic samples collected from Toronto Harbour (Ontario, Canada) to compare taxonomic and functional diversity of macroinvertebrates and their responses to environmental gradients. At the species rank, sites assessed using COI metabarcoding showed more variation than sites assessed using morphological methods. Depending on the assessment method, we detected gradients in magnesium (morphological taxa), ammonia (morphological taxa, COI sequence variants), pH (18S sequence variants) as well as gradients in contaminants such as metals (COI & 18S sequence variants) and organochlorines (COI sequence variants). Observed responses to contaminants such as aromatic hydrocarbons and metals align with known patchy distributions in harbour sediments. We determined that the morphological approach may limit the detection of macroinvertebrate responses to lake environmental conditions due to the effort needed to obtain fine level taxonomic assignments necessary to investigate responses. DNA metabarcoding, however, need not be limited to macroinvertebrates, can be automated, and taxonomic assignments are associated with a certain level of accuracy from sequence variants to named taxonomic groups. The capacity to detect change using a scalable approach such as metabarcoding is critical for addressing challenges associated with biodiversity monitoring and ecological investigations.


Assuntos
Código de Barras de DNA Taxonômico , Ecossistema , Biodiversidade , Biomarcadores , DNA/genética , Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental , Ontário
2.
Evol Appl ; 13(9): 2439-2448, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005232

RESUMO

Sloths are notoriously slow and consequently have limited dispersal ability, which makes them particularly vulnerable to the effects of habitat fragmentation and degradation. Sloths in Costa Rica are considered of conservation concern due to habitat loss, livestock production and increasing urbanization. Reintroductions from rescue centres are commonplace across the country, yet their genetic diversity and population structure are unknown, and there is currently little consideration of the genetic background prior to intervention or releases. We used microsatellite analysis to undertake the first exploratory investigation into sloth population genetics in Costa Rica. Using data from 98 two-fingered sloths (Choloepus hoffmanni) from four different geographic regions, we determined the presence of four potential genetic groups, three of them with minimal population structuring despite the limited dispersal ability and presence of physical barriers. Sloths from the North appear to represent a highly distinct population that we propose may require management as a discrete unit for conservation. We stress the need for additional analyses to better understand the genetic structure and diversity of North andWest regions and suggest that rescue facilities in Costa Rica should consider the genetic background of rehabilitated sloths when planning future reintroductions. Our results also highlight the threat posed by physical isolation due to widespread urbanization and agriculture expansion for a species with a weak dispersal ability.

3.
Parasitology ; 147(6): 706-714, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32046798

RESUMO

The spread of invasive, non-native species is a key threat to biodiversity. Parasites can play a significant role by influencing their invasive host's survival or behaviour, which can subsequently alter invasion dynamics. The North American signal crayfish (Pacifastacus leniusculus) is a known carrier of Aphanomyces astaci, an oomycete pathogen that is the causative agent of crayfish plague and fatal to European crayfish species, whereas North American species are considered to be largely resistant. There is some evidence, however, that North American species, can also succumb to crayfish plague, though how A. astaci affects such 'reservoir hosts' is rarely considered. Here, we tested the impact of A. astaci infection on signal crayfish, by assessing juvenile survival and adult behaviour following exposure to A. astaci zoospores. Juvenile signal crayfish suffered high mortality 4-weeks post-hatching, but not as older juveniles. Furthermore, adult signal crayfish with high-infection levels displayed altered behaviours, being less likely to leave the water, explore terrestrial areas and exhibit escape responses. Overall, we reveal that A. astaci infection affects signal crayfish to a much greater extent than previously considered, which may not only have direct consequences for invasions, but could substantially affect commercially harvested signal crayfish stocks worldwide.


Assuntos
Aphanomyces/fisiologia , Astacoidea/microbiologia , Fatores Etários , Animais , Comportamento Animal , Espécies Introduzidas , Longevidade
4.
PLoS One ; 14(12): e0225409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31830042

RESUMO

Biomonitoring programs have evolved beyond the sole use of morphological identification to determine the composition of invertebrate species assemblages in an array of ecosystems. The application of DNA metabarcoding in freshwater systems for assessing benthic invertebrate communities is now being employed to generate biological information for environmental monitoring and assessment. A possible shift from the extraction of DNA from net-collected bulk benthic samples to its extraction directly from water samples for metabarcoding has generated considerable interest based on the assumption that taxon detectability is comparable when using either method. To test this, we studied paired water and benthos samples from a taxon-rich wetland complex, to investigate differences in the detection of arthropod taxa from each sample type. We demonstrate that metabarcoding of DNA extracted directly from water samples is a poor surrogate for DNA extracted from bulk benthic samples, focusing on key bioindicator groups. Our results continue to support the use of bulk benthic samples as a basis for metabarcoding-based biomonitoring, with nearly three times greater total richness in benthic samples compared to water samples. We also demonstrated that few arthropod taxa are shared between collection methods, with a notable lack of key bioindicator EPTO taxa in the water samples. Although species coverage in water could likely be improved through increased sample replication and/or increased sequencing depth, benthic samples remain the most representative, cost-effective method of generating aquatic compositional information via metabarcoding.


Assuntos
Biodiversidade , DNA , Ecossistema , Monitoramento Ambiental , Invertebrados/classificação , Animais , Monitoramento Biológico , Código de Barras de DNA Taxonômico , Água Doce , Invertebrados/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...